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MATHEMATICS OF DEGREE 
PART ONE 

THE MATHEMATICS OF DEGREE, CATEGORY   C
1

 
REAL NUMBERS OF DEGREE 

 
 

1. FUNDAMENTAL CONCEPTS AND DEFINITIONS 
 
Definition: The notation, 
 

α
κ

 (1.1) 
 
represents a number of degree. 
Where α and κ are real numbers. α shall be called the base and κ the hyperthetis 
(degree) of the number of degree (1.1). The number κ signifies the degree of the 
number α. 
 
Definition: The mathematical operations, applied to the hyperthetis and the base 
of a number of degree, are the equivalent familiar operations of real numbers. 
 
Definition: The mathematics of degree are founded in two categories: 
 a. In the axiomatic foundation of category  C

1
, and 

 b. In the axiomatic foundation of category  C
0

. 
 
Definition: According to the mathematics of degree, the hitherto known real 
numbers are considered numbers of degree, i.e.: 

a. Degree κ = 1, of the axiomatic foundation  C
1

, or  
b. Degree κ = 0, of the axiomatic foundation  C

0
. 

 
Definition: The degree, 

a. κ = 1, of the axiomatic foundation  C
1

, and 
b. κ = 0, of the axiomatic foundation  C

0
, 

 
will be called fundamental degrees of the mathematics of degree.  
 
Based on the definitions stated above, it is immediately obvious that the hitherto 
known real numbers are a partial case of the numbers of degree. 
 
This means that: 
If, to any mathematical formula that arises from the axiomatic foundation   C

1
 or  

  C
0

, we assign, 
a. κ = 1, (when referring to category  C

1
), and 

b. κ = 0, (when referring to category  C
0

), 
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then, from the above mentioned mathematical formulae of the mathematics of 
degree, the equivalent mathematical formulae of the hitherto known 
mathematics necessarily result. 
 
NOTE: When referring to the axiomatic foundation of category  C

1
, κ = 1 is implied 

for numbers not bearing a hyperthetis, it is simply omitted for simplicity. 
Similarly, when referring to the axiomatic foundation of category  C

0
, κ = 0 is implied 

for numbers not bearing a hyperthetis, again omitted for simplicity. 
 

2. AXIOMATIC FOUNDATION OF REAL NUMBERS OF DEGREE, 

CATEGORY   C
1

 
 

BASIC OPERATIONS ON NUMBERS OF DEGREE, CATEGORY    C
1

 
 
   1. Addition 

   a 1

κ
+ a2

λ
= a1 + a2( )

κ ⋅λ

 
   (α1 + α2) is the base and κ·λ the hyperthetis. 
 
   2. Subtraction 

   a 1

κ
− a2

λ
= a1 − a2( )

κ ⋅λ

 
   (α1 - α2) is the base and κ·λ the hyperthetis.   
 
   3. Multiplication 

   a1

κ
⋅ a2

λ
= a1 ⋅ a2( )

κ ⋅λ

 
   (α1 · α2) is the base and κ·λ the hyperthetis. 
 
   4. Division 

   a1

κ
: a2

λ
= a1 : a2( )

κ ⋅λ

 
   (α1 : α2) is the base and κ·λ the hyperthetis. 
 
Based on the above, it can be shown that: 

If   a1

κ
,  a2

λ
,  a

μ

3 are elements of the set Sg of real numbers of degree, category    C
1

, then: 
 

 a. a 1

κ
+ a2

λ
 and a1

κ
⋅ a2

λ
 belong to Sg (closure property). 

  

 b. a 1

κ
+ a2

λ
 = a2

λ
+ a 1

κ
 (commutative property). 

 

 c.   a
κ

1+ (a2

λ
+ a

μ

3) = (a
κ

1+ a2

λ
) + a

μ

3  (associative property). 
  

d.  a
κ

1⋅ (a2

λ
⋅ a

μ

3) = (a
κ

1⋅ a2

λ
) ⋅ a

μ

3  (associative property). 
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e. a 1

κ
⋅ a2

λ
= a2

λ
⋅ a 1

κ
 (commutative property). 

       

 f.  a1

κ
⋅ (a2

λ
+ a3

μ

) = a1

κ
⋅ (a2 + a3

λ⋅μ

)  and not a1

κ
⋅ (a2

λ
+ a3

μ

) = a 1

κ
⋅ a2

λ
+ a1

κ
⋅ a 3

μ

 (non-distributive  
     property). 
 

 g. a 1

κ
+ 0

1
= 0

1
+ a 1

κ
= a 1

κ
. 

0
1

 is called the identity element of addition. 
 

 h. a 1

κ
⋅1

1
= 1

1
⋅ a 1

κ
= a 1

κ
. 

1
1
 is called the identity element of multiplication. 

 

i. For every real number of degree a1

κ
 there is only one real number of degree a

ρ

 
of Sg, such that:   

a 1

κ
+ a

ρ

= 0
1

. 

  a
ρ

 is called the additive inverse of a 1

κ
 and is denoted by: 

− a1

1/ κ
, where ρ =

1
κ

. 

 

 j.  For every a 1

κ
⋅ a

ρ

= a
ρ

⋅ a 1

κ
= 1

1
.  

  a
ρ

 is called the multiplicative inverse of a 1

κ
 and is denoted by: 

 

1
a1

⎛
⎝⎜

⎞
⎠⎟

1/ κ

 

  
 k. If: 

a 1

κ
+ a2

λ
= a3

μ

+ a4

ν
 

  then: 

a 1

κ
+ a2

λ
− a3

1
μ

= a4

ν
 

 

a 1

κ
= a3

μ

+ a4

ν
− a2

1
λ

 
 

  a 1

κ
+ a2

λ
− a3

1
μ

− a4

1
ν

= 0
1

  (statement ο) 
 
From the above identity we notice that, in an equality with real numbers of 

degree in category  C
1

, when a term is moved from one side of the equation to the 
other, then, the sign of the base changes and the hyperthetis takes the value of its 
inverse. 
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IDENTITIES AND NUMBERS 
 

Identity 1: If a
κ

 is a real number of degree, then we have: 

a
κ

= α
1
⋅1

κ
= α ⋅1

κ
 

 
Identity 2: According to the known, we have: 
 

a
κ

= a
κ

 
 
  Indeed: 
 

a
κ

⋅ a
κ

= ( a
κ

⋅ a
κ

)  
 

     = a2
κ 2

= a
κ

, that is to say, the subroot of a
κ

, QED. 
 
  And in general: 
 

a
κν

= aν
κν

 
 
  Indeed: 
 

 

aν
κν

⋅ aν
κν

⋅ ⋅ ⋅ aν
κν

ν − times
1 244 344 = aνν

κ νν

= a
κ

 QED. 

 
Identity 3: Always: 
 

a
κ⎛

⎝
⎞
⎠

ν

= aν
κ ν

 

 
  Indeed: 
 

  
a
κ
⋅ a

κ
⋅ ⋅ ⋅ ⋅a

κ

ν − times
124 34 = (a ⋅ a ⋅ ⋅ ⋅ a

κ ⋅κ ⋅...⋅κ
) = aν

κ ν

 

 
Definition: We define as a power, 

a( )ν
μ

 

   where α is the base and  ν
μ

 the index (itself a number of degree),  
  the relationship: 

a( )ν
μ

= a
μ

⋅ a
μ

⋅ ⋅ ⋅ a
μ

ν − times
124 34 = aν

μν

 

   where aν  is the base and μν  its hyperthetis. 
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Identity 4: The previous definition and identity 3 can be united to give: 
 
Definition: By definition, we accept that the general form will be:  

 
a
κ⎛

⎝
⎞
⎠

ν
μ

= a
κ ⋅μ

⋅ a
κ ⋅μ

⋅ a
κ ⋅μ

⋅ ⋅ ⋅ a
κ ⋅μ

ν − times
1 244 344  

 
  which reduces to: 
 

a
κ⎛

⎝
⎞
⎠

ν
μ

= aν
(κ ⋅μ )ν

 

 
  where, aν  is the base and κ ⋅ μ( )ν  the hyperthetis. 
 
E.g.:  for μ = 1, we have:  
 

a
κ⎛

⎝
⎞
⎠

ν
1

= a
κ⎛

⎝
⎞
⎠

ν

= aν
κ ν

 (identity 3). 

 
Also, for κ = 1 and μ = 1, we have: 
 

a
1⎛

⎝
⎞
⎠

ν
1

= aν , 

 
etc.. 
 

Identity 5: For two numbers of degree a
κ

 and a
κ

, the following always holds: 
 

a
κ

+ a
κ

= a + a( )
κ ⋅κ

= 2a
κ 2⎛

⎝⎜
⎞
⎠⎟

 

  or 

   a
κ

+ a
κ

= 2 ⋅ a
κ

 (Only when κ = 0 or κ = 1) 
 
Identity 6: If: 
 

 a = a1 + a2 + a3 + ... + aν  
  then by definition: 
 

 a
κ

= (a1 + a2 + a3 + ... + aν

κ
)  

 

Definition: Two real numbers of degree  a
κ

 and β
λ

 are equal, 
 

a
κ

= β
λ
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  if and only if: 
 

      a = β
and    κ = λ

⎫
⎬
⎭

 

 
Identity 7: In an equality made up of two equal numbers of degree, if we add, 
subtract, multiply or divide both sides by the same number of degree, the equality 
remains unchanged. 
  

EXAMPLES 
 
For better understanding and practice in the mathematics of degree, it is judged 
necessary to mention a few representative examples of what has been stated above. 
 
1. Calculate the sum: 
 

A = 2
3
+ 3

5
+ 2

−6
− 3

1,5
+ 0

8
 

 
 As we know, we have: 

A = 2 + 3 + 2 − 3 + 0
3⋅5⋅(−6)⋅1,5⋅8⎛

⎝⎜
⎞
⎠⎟

= 4
−1080

 

 
I.e., a number of degree, with base 4 and hyperthetis -1080 and it is obviously of 
degree -1080. 

 
2. Calculate the product: 

A = 2
2
⋅ 3

−2
⋅ 4

3
⋅ −5

−2⎛
⎝

⎞
⎠  

 
 As we know, we have: 

A = 2 ⋅ 3 ⋅ 4 ⋅ −5( )
2⋅ −2( )⋅3⋅ −2( )⎛

⎝⎜
⎞
⎠⎟

= −120
24

 

 
3. Calculate the ratio: 
 

A = 4
6

: 2
−3

 
 
 The required ratio is: 
 

A = 4 : 2
6:(−3)⎛

⎝⎜
⎞
⎠⎟

= 2
−2

 

 
4. Because as we know: 

2
3
+ 3

5
= 2 + 3

3⋅5⎛
⎝

⎞
⎠ = 5

15
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 i.e.,       2
3
+ 3

5
= 5

15
 

 
 then: 
 

2
3

= 5
15

− 3
1/5

= 5 − 3
15⋅1/5⎛

⎝
⎞
⎠ = 2

3
 QED 

 
5. Calculate the square root: 
 

A = 17
9

 
 
 As we know, we have: 
 

A = 17
9

= 17
3

 
 
6. Calculate the following: 
 

A = 49
65  

 
 As we know, we have: 
 

A = 495
65

 
 
7. Calculate the power: 
 

A = 4
3⎛

⎝
⎞
⎠

4

 

 
 As we know, it is: 
 

A = 44( )
34

= 256
81

 
 
8. Calculate the power: 
 

A = 5( )3
2

 
 

 As we know, we have: 

A = 53( )
23

= 125
8

 
 
9. Calculate the power: 

A = 2
1⎛

⎝
⎞
⎠

3
1
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 As we know, we have: 
 

A = 23( )
1⋅1( )3

= 8
13

= 8
1

= 8  
 
10. For which values of x and y does the following equality hold? 
 

x + y
x⎛

⎝
⎞
⎠ = 3

3x − y

 

 
SOLUTION 

 
 As we know, for the above equality to hold, we must have: 
 

        x + y = 3
and  x = 3x − y

⎫
⎬
⎭

 

 
 Solving these simultaneous equations, we get, 
 

x = 1
y = 2

⎫
⎬
⎭

 

 
 which are the required values.  
 
 Indeed, for x = 1 and y = 2 the given equation becomes: 
 

1 + 2( )
1

= 3
3⋅1−2

 
 

      or 3
1

= 3
1

 QED. 
 
11. Calculate the value of the following: 
 

A =
2
3

3
1
+ 2

−4⎛
⎝

⎞
⎠ + 3

2
⋅ 4

3
− 4

9
+ 27

83

3
2⎛

⎝
⎞
⎠

3

⋅ 2
3⎛

⎝
⎞
⎠

3

+ 1
5
⋅ 1

1/5
 

 
SOLUTION 

A =
2
3

3 + 2( )
1⋅(−4)

+ 3 ⋅ 4( )
2⋅3

− 4
9

+ 273
83

33( )
23

⋅ 23( )
33

+ 1 ⋅1( )
5⋅1/5

=

=
2
3
⋅ 5

−4
+ 12

6
− 2

3
+ 3

2

27
8

⋅ 8
27

+ 1
1 =
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10
−12

+ 12
6

− 2
3
+ 3

2

216
216

+ 1
1 =

10 + 12 − 2 + 3( )
−12⋅6⋅3⋅2

216 + 1( )
216⋅1 =

23
−432

217
216 =

23
217

⎛
⎝⎜

⎞
⎠⎟

−432/216

=
23

217
⎛
⎝⎜

⎞
⎠⎟

−2

≅ 0,105
−2

 

 
12. Calculate the following: 
 

a
κ

+ β
λ⎛

⎝
⎞
⎠

2

 

 
 As we know, we have: 
 

a
κ

+ β
λ⎛

⎝
⎞
⎠

2

= a + β( )
κ ⋅λ⎡

⎣⎢
⎤
⎦⎥

2

= a + β( )2
κ 2 ⋅λ2

 

 
13. Calculate the value of the following: 

a
κ

+ β
λ⎛

⎝
⎞
⎠

μ
ν

 

 
 As we know, we have: 
 

a
κ

+ β
λ⎛

⎝
⎞
⎠

μ
ν

= a + β( )
κ ⋅λ⎡

⎣⎢
⎤
⎦⎥

μ
ν

= a + β( )ν
μν ⋅κ ν ⋅λν

= a + β( )ν
(μ⋅κ ⋅λ )ν

 

 
where, as we can see, the base (a + β)ν  is Newton’s binomial theorem and 

 μ ⋅κ ⋅ λ( )ν  its hyperthetis. 
 

NOTEWORTHY ALGEBRAIC FORMULAE OF CATEGORY C
1

 
 
1. As stated above: 
 

a
κ⎛

⎝
⎞
⎠

ν
μ

= aν
(κ ⋅μ )ν

 

 
   from which: 
 

 a
κ⎛

⎝
⎞
⎠

ν

= aν
κ ν

 and 

 

(a)ν
μ

= aν
μν
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2. Prove that: 
 

a
κ⎛

⎝
⎞
⎠

ρ
τ⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

ν
μ

= aρν
κτ( )ρν ⋅μν

 

 
 Proof: According to the equation in (1) above, we have: 
 

a
κ⎛

⎝
⎞
⎠

ρ
τ

= aρ
(κ ⋅τ )ρ

, therefore: 

 

a
κ⎛

⎝
⎞
⎠

ρ
τ⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

ν
μ

= aρ
κτ( )ρ⎛

⎝
⎜

⎞

⎠
⎟

ν
μ

= aρν
κτ( )ρ ⋅μ( )ν

= aρν
κτ( )ρν ⋅μν

, QED 

 
3. Prove that: 

a
κν

μ

= aν

κ
μνν

  
 
 Proof: we set: 

a
κν

μ

= A
B

 
 
 so we have:  
 

a
κ

= A
B⎛

⎝
⎞
⎠

μ
ν

 or  a
κ

= Αν
Βμ( )ν

 from which we get: 

   Βμ( )ν = κ

and  Aν = a 

⎫
⎬
⎪

⎭⎪
 

 
 which are rearranged to give: 
 

B =
κ
μν

ν

A = aν

⎫

⎬
⎪

⎭
⎪

 QED. 

 
4. Prove that: 
 

a
κν

μ
ρ
τ

= aρν

κ
μν ⋅τ ρν

ρν
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 Proof: According to the equation in (3) above, we have: 
 

a
κν

μ

= aν

κ
μνν

, therefore: 
 

a
κν

μ
ρ
τ

= aν

κ
μνν

ρ
τ

= aρν

κ
μν ⋅τ ρν

ρν

, QED. 
 
5. Prove that: 
 

a
κν

μ

⋅ β
λν

μ

= a ⋅ βν

κ ⋅λ

μν( )2ν

 
 
 Proof: As we know, we have 
 

a
κν

μ

= aν

κ
μνν

, and 
 

β
λν

μ

= βν

λ
μ νν

 
 
 Multiplying the parts we get: 
 

a
κν

μ

⋅ β
λν

μ

= aν

κ
μ νν

⋅ βν

λ
μ νν

= a ⋅ βν

κ ⋅ λ

μ ν( )2ν

 QED 
 
6. Prove that: 
 

a
κν

μ

: β
λν

μ

=
a
β

ν

κ
λ

ν

 

 
Proof: Exactly as previous example 

 
7. Prove that: 
 

a
κ⎛

⎝
⎞
⎠

ρ
τ

ν
μ

= a ρν

κ ⋅τ( )ρ

μ ν
ν

= a
ρ
ν

κτ( )ρ

μ ν

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
ν
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 Proof: As we know, we have 
 

a
κ⎛

⎝
⎞
⎠

ρ
τ

= aρ
κτ( )ρ

 

 Therefore, again from what we know: 

a
κ⎛

⎝
⎞
⎠

ρ
τ

ν
μ

= a ρ
κτ( )ρ

ν
μ

= a ρν

κ ⋅τ( )ρ

μ ν
ν

= a
ρ
ν

κτ( )ρ

μ ν

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
ν

, QED. 

 
8. Prove that: 
 

  

a
κ⎛

⎝
⎞
⎠

ν
μ

⋅ a
κ⎛

⎝
⎞
⎠

ν
μ

⋅ a
κ⎛

⎝
⎞
⎠

ν
μ

..... a
κ⎛

⎝
⎞
⎠

ν
μ

= a
κ⎛

⎝
⎞
⎠

ν ⋅ρ
μ

ρ − times
1 2444444 3444444

 

 
 Proof: As we know, the above can be written as: 
 
 

 

aν
κ ⋅μ( )ν

⋅ aν
κ ⋅μ( )ν

⋅ aν
κ ⋅μ( )ν

⋅ ⋅ ⋅ ⋅ aν
κ ⋅μ( )ν

ρ− times
1 2444 3444 = aνρ

κμ( )ν⋅ρ

= a
κ⎛

⎝
⎞
⎠

νρ
μ

, QED. 

 
9. Prove that: 
 

  

a
κ⎛

⎝
⎞
⎠

ν
μ

+ a
κ⎛

⎝
⎞
⎠

ν
μ

+ a
κ⎛

⎝
⎞
⎠

ν
μ

..... a
κ⎛

⎝
⎞
⎠

ν
μ

= ρ ⋅ aν
(κ ⋅μ )ν ⋅ρ

ρ − times
1 2444444 3444444

 

 
 Proof: As we know, the above can be written as: 
 

 

aν
κ ⋅μ( )ν

+ aν
κ ⋅μ( )ν

+ aν
κ ⋅μ( )ν

⋅ ⋅ ⋅ ⋅ aν
κ ⋅μ( )ν

ρ− times
1 24444 34444 = ρaν

κμ( )ν⋅ρ

, QED. 

 
10. It can also be shown that: 
 

    a) a
κ⎛

⎝
⎞
⎠

ν
μ

+ β
λ⎛

⎝
⎞
⎠

ρ
τ

= aν + β ρ( )
κμ( )ν ⋅ λτ( )ρ

 

 

    b) a
κ⎛

⎝
⎞
⎠

ν
μ

− β
λ⎛

⎝
⎞
⎠

ρ
τ

= aν − β ρ( )
κμ( )ν ⋅ λτ( )ρ
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c) a
κ⎛

⎝
⎞
⎠

ν
μ

⋅ β
λ⎛

⎝
⎞
⎠

ρ
τ

= aν ⋅ β ρ( )
κμ( )ν ⋅ λτ( )ρ

 

 

d) a
κ⎛

⎝
⎞
⎠

ν
μ

: β
λ⎛

⎝
⎞
⎠

ρ
τ

= aν : β ρ( )
κμ( )ν : λτ( )ρ

 

 
The above proofs are very easy, based on what has been mentioned so far. 

 

11. If: a
κ⎛

⎝
⎞
⎠

x
y

= A1

B1

, then by definition: 

log
a
κ Α1

Β1

= x
y

  (Β) 

where, a
κ

 is the base of the logarithm A1

B1

. 
 
 Because we have: 
 

a
κ⎛

⎝
⎞
⎠

x
y

= ax
(κ y)x

 

 
 then from these relationships we get: 
 

ax
(κ y)x

= A1

B1

 or 
 

κ y( )x = B1

α x = A1

⎫
⎬
⎪

⎭⎪
   c( ) 

 
Solving the simultaneous equations (c) for x and y we find the value of the 

logarithm (base a
κ

) of the number of degree A1

B1

. 
 

12.  a
κ
,  a

κ
+ β

λ⎛
⎝

⎞
⎠ ,  (a

κ
+ β

λ
) + β

λ⎡
⎣⎢

⎤
⎦⎥
,......... = a

κ
,  a + β( )

κ ⋅λ

, (a + 2β
κλ2

),...........(a + (ν − 1)β)
κ ⋅λν−1

 

  

is an arithmetic progression of degree (ν terms), with first term, a
κ

, and common 

difference, β
λ

. 
 
13. For the above arithmetic progression, prove that: 

 
a) The last term of the sequence is: 

 

τ = (a + (ν − 1)β)
κ ⋅λν−1
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b) The sum of ν terms is: 

Σ =
2a + (ν − 1)β[ ]ν

2

κ ν ⋅λ
ν−1

2
⎛
⎝⎜

⎞
⎠⎟
ν⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

Proof: a) By definition, the νth term of an arithmetic progression is: 
 

τ = (a + (ν − 1)β)
κ ⋅λν−1

 
 

b) To find the sum of ν terms we proceed as follows: 
 

Σ = a
κ

+  a + β( )
κ ⋅λ

+ (a + 2β
κλ2

) + ........... + (a + (ν − 1)β)
κ ⋅λν−1

 
 

or Σ =
2 a + (ν − 1)β[ ]ν

2

κ ⋅κλ ⋅κλ 2 ⋅...⋅κλ ν −1⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
2 a + (ν − 1)β[ ]ν

2

κ ν ⋅λ 1+ 2 + 3+ ......ν −1⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

 but: 

1 + 2 + 3 + … +(ν – 1) = 
ν − 1

2
⎛
⎝⎜

⎞
⎠⎟

ν  

 which gives us: 

Σ =
2a + (ν − 1)β[ ]ν

2

κ ν ⋅λ
ν −1

2
⎛
⎝⎜

⎞
⎠⎟
ν⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

, QED 

 

14. a
κ
,  a

κ
⋅ β

λ⎛
⎝

⎞
⎠ ,  (a

κ
⋅ β

λ
) ⋅ β

λ⎡
⎣⎢

⎤
⎦⎥
,......... = a

κ
,  a ⋅ β( )

κ ⋅λ

, (a ⋅ β 2
κλ2

),...........(a ⋅ β (ν −1) )
κ ⋅λν−1

 , 

is a geometric progression of degree (ν terms), with first term, a
κ

, and common 

ratio, β
λ

. 
 

a) The νth term of the sequence is: 
 

τ = (aβν −1)
κλν−1

 
 

b) The sum of ν terms is: 

Σ =
a(βν − 1)

β − 1
⎡

⎣
⎢

⎤

⎦
⎥

κ ν ⋅λ
ν−1

2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ν

 

 
 These are proven in the manner demonstrated for the arithmetic progression. 
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15. Other sequences of degree: 
 

 
a
κ⎛

⎝
⎞
⎠

ν
μ

, a
κ⎛

⎝
⎞
⎠

ν
μ

+ β
λ⎛

⎝
⎞
⎠

ρ
τ

,  a
κ⎛

⎝
⎞
⎠

ν
μ

+ β
λ⎛

⎝
⎞
⎠

ρ
τ

+ β
λ⎛

⎝
⎞
⎠

ρ
τ

, …. 

 arithmetic progression with first term, a
κ⎛

⎝
⎞
⎠

ν
μ

, and common difference β
λ⎛

⎝
⎞
⎠

ρ
τ

.  

 Also: 

 
a
κ⎛

⎝
⎞
⎠

ν
μ

, a
κ⎛

⎝
⎞
⎠

ν
μ

⋅ β
λ⎛

⎝
⎞
⎠

ρ
τ

,  a
κ⎛

⎝
⎞
⎠

ν
μ

⋅ β
λ⎛

⎝
⎞
⎠

ρ
τ

⋅ β
λ⎛

⎝
⎞
⎠

ρ
τ

 …. 

 geometric progression with first term, a
κ⎛

⎝
⎞
⎠

ν
μ

, and common ratio β
λ⎛

⎝
⎞
⎠

ρ
τ

.  

 
NOTE: All the above mathematical formulae, can be reduced to the equivalent 
formulae of the hitherto known mathematics by setting the hyperthetes of the 
numbers of degree equal to 1.  

 
 

GRAPHICAL REPRESENTATION OF 
NUMBERS OF DEGREE 

 
The above mentioned numbers of degree can be represented graphically on a plane as 
follows:  
 
Consider fig. 1, the plane Eg on which an orthogonal set of axes, x-y (consisting of 
real numbers), is marked. 
 

 
fig. 1 
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Now consider the number of degree  2
3

. On the x-axis we take represent the base (e.g. 
2) and on the y-axis the hyperthetis (3). So, a point Μ on the x-y plane, with 

coordinates (2,3) corresponds to the number of degree 2
3

. 
 

Similarly, the number of degree −1.5
−1.5

 corresponds to the point (-1.5,-1.5) on the plane 

and in general any number of degree, ai

κ i

, has a unique correspondence to the point 

  Mi = (ai ,κ i ) . 
 
Based on what has been stated above, the x-axis shall be called the base axis and 
the y-axis shall be called the hyperthetis axis of the real numbers of degree. The 
plane Eg shall be called the plane of real numbers of degree. 
 
As we can see, on the plane Eg of the real numbers of degree, any point M 
corresponds to a unique number of degree and any number of degree corresponds to a 
unique point M on the plane. 
  

Definition: We define the modulus, A , of a real number of degree,  a
κ

, as: 
 

A = a2 +κ 2  

 for example, the modulus of the number of degree 2
3

 is: 

A = 22 + 32 = 13  
 
 The modulus, A , is the length OM

s ruuu
.  

 
 

3. FUNCTIONS OF DEGREE 
 
The notation: 

yg = fg (x)  (3.1) 

 
represents a function of degree of the real variable x, where yg is the 
dependent variable. 

 
In (3.1), because yg and fg(x) are numbers of degree, they will have the form:  

 yg = yb

yh ⎫
⎬
⎪

⎭⎪
 (3.2) 

 

and  fg (x) =
f2(x)
f1(x)

⎫
⎬
⎪

⎭⎪
    (3.3) 
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Based on (3.2) and (3.3), the equation of degree, (3.1), is written as: 

  

yg =
yh

yb

= fg (x) =
f2 (x)

f1(x)

 
(3.4)

 where: 
 
  The function: 
 

yh = f2(x)  (3.5) 
 
  is the hyperthetis function and, 
 

yb = f1(x)  (3.6) 
 
  is the base function, of the function of degree (3.1). 
 
 
By definition, the function of degree (3.1), i.e., 
 

  
yg = fg (x)   (3.7) 

 
 is equivalent to the functions (3.5) and (3.6), i.e., 
 

  

yh = f2(x)
yb = f1(x)

⎫
⎬
⎪

⎭⎪
  (3.8) 

 
 
The functions (3.8), are the conjugated equations of the function of degree (3.1). 
 
In an equation of degree, 
 

  

yg =
f2(x)

f1(x)
  (3.9) 

 
the following cases are possible: 
 
a.    f2 (x) = constant, and 
   f1(x) = function of x. 
 
b.    f2 (x) =  function of x, and 
   f1(x) =  constant. 
 
c.    f2 (x) =  function of x, and 
   f1(x) =  function of x. 
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INQUIRY INTO THE FUNCTIONS OF DEGREE 
 
A. Single variable functions of degree 
 
Consider the function of degree: 
 

  
yg = 3

2

⋅ x
x+1

+ 1
6

  (3.10) 
 in the variable x. 
 
Function (3.10) becomes: 
 

  
yg = 3

2

⋅ x
x+1

+ 1
6

= 3 ⋅ x( )
2(x+1)

+ 1
6

= 3x + 1( )
2 x+1( )⋅6

⇔  
 

  
yg = 3x + 1( )

12( x+1)

  (3.11) 
 
Consequently, from (3.11) we get the conjugate equations of the given function 
(3.10), as, 
 

  

yh = 12(x + 1)
yb = 3x + 1

⎫
⎬
⎪

⎭⎪
 (3.12) 

 
where, yh is the conjugate hyperthetis function and yb is the conjugate base 
function of the function of degree (3.10). 
 
Consider now a tri-orthogonal system of coordinates (x,yb,yh). 
 
Setting a value to the variable x, e.g. x = 2, then from (3.11) or (3.12), we have: 
 

  
yg = (3 ⋅ 2 + 1)

12(2+1)

= 7
36

, i.e.: 
 

yh = 36  and yb = 7  
 
Therefore, in the (x,yb,yh) coordinate system of figure 2, we have the point Μ1 with 
coordinates (x = 2,  yb = 7,  yh = 36), i.e., the point: 
 

  M1 = (2,7,36)   (3.13) 
 
Similarly, by setting a different value to the variable x, e.g. x = 3, then from (3.11) or 
(3.12), we have: 

  
yg = 3 ⋅3+ 1( )

12(3+1)

= 10
48

,⇒ , i.e.: 
 

yh = 48 and yb = 10  
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Therefore, in the (x,yb,yh) coordinate system of figure 2, we have the point Μ2 with 
coordinates (x = 3,  yb = 10,  yh = 48), i.e., the point: 
 

  M2 = (3,10,48)  (3.13) 
 
and so forth, for any value xi ,  (i = 1,2,3,...)  that can be assigned to the variable x, we 
get a point Μi with coordinates: 
 

  
Mi = xi ,  yb,i ,  yh,i( ) (3.14) 

 
Obviously, the points Μi of (3.14), all lie on the curve C of the given function of 
degree (3.10).  
 

 
fig. 2 

 
Conclusion: 

 
A function of degree in one real variable, x, can be represented graphically on a 
3-dimensional Euclidean space (tri-orthogonal coordinate system (x,yb,yh)) as a 
curve C, figure 2. 
  
B. Two variable functions of degree 

 
In the manner above, we can consider functions of degree in two variables x and y. 
 
Suppose we have a function of degree: 

  
zg = x

y

+ y
x

+ 1
2

  (3.15) 
 

with two variables x, y. 
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Function (3.15) can be rearranged to give: 

  
zg = (x + y)

y ⋅x

+ 1
2

= x + y + 1( )
2xy

⇔  
 

zg = x + y + 1( )
2xy

  (3.16) 
 
Consequently, the conjugate equations of the given function (3.15) are: 
 

  

yh = 2xy
yb = x + y + 1

⎫
⎬
⎪

⎭⎪
 (3.17) 

 
Now consider figure 3, a 4-dimensional space Ε4 with an orthogonal system of 
coordinates (x,y,yb,yh). 

 
fig. 3 

 
If we assign the values to the variables x and y, e.g. x = 2 and y = 3, then from (3.16) 
or (3.17), we get: 
 

    Zg = 2 + 3+ 1( )
2⋅2⋅3

= 6
12

, i.e.,  (3.18) 
 

yh = 12  and yb = 6  
 
Therefore, in the coordinate system (x,y,yb,yh) of figure 3, we have the point Μ1 with 
coordinates (x = 2,   y = 3,   yb = 6,   yh = 12), i.e., the point: 
  

  M1 = (2,3,6,12)  (3.19) 
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Similarly, by setting different values to the variables x and y, e.g. x = 3, then from 
(3.17) we have: 
 

 
  
Zg = 10 + 5 + 1( )

2⋅10⋅5

= 16
100

, i.e., (3.20) 
 

  yh = 100   and  yb = 16 ,  
 
Therefore, in the coordinate system (x,y,yb,yh) of figure 3, we have the point Μ2 with 
coordinates (x = 10,   y = 5,   yb = 16,   yh = 100), i.e., the point: 
  

  M2 = (10,5,16,100)  (3.20) 
 
 
and so forth, for any value   xi , yi , (i = 1,2,3,...)  that can be assigned to the variables x 
and y, we get a point Μi with coordinates: 
 

  
Mi = xi , yi ,   yb,i ,  yh,i( )  (3.21) 

 
Obviously, the points Μi of (3.21), all lie on the curve C of the given function of 
degree (3.15).  
 

Conclusion: 
 
A function of degree in two real variables, x and y, can be represented 
graphically on a 4-dimensional Euclidean space (orthogonal coordinate system 
(x,y,yb,yh)) as a curve C, figure 3. 
 
 
C. n variable functions of degree 
 
Suppose we have the function of degree: 
 

  

Zg =
f1(x1,x2 ,x3,....xn )

f2 (x1,x2 ,x3,....xn )
=

yh

yb

 (3.22) 

 
with   x1,x2 ,x3,....xn variables. 
 
In the manner above, we can consider functions of degree in n variables. 
 

Conclusion: 
 
A function of degree in n real variables, x1,x2 ,x3,....xn , can be represented 
graphically on a (n+2)-dimensional Euclidean space (orthogonal coordinate 
system (x1,x2,x3,...,yb,yh)) as a curve C, figure 4. 
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fig. 4 

 
4. EQUATIONS OF DEGREE 

 
For any function of degree: 
 

  
yg = fg (x)   (4.1) 

 
in one variable, x, its conjugate equations are: 
 

and  
yh = f2(x)
yb = f1(x)

⎫
⎬
⎪

⎭⎪
 (4.2) 

 

Definition. We define the solutions of fg (x)  in the category C
1

, to be the solution 
of the conjugate equations (4.2) for which: 
 

  

           f2 (x) = 1
and      f1(x) = 0

 
(4.3)

 
The solutions of   f2(x) = 1  shall be called solutions of the hyperthetis and 
solutions of    f1(x) = 0  shall be called solutions of the base, of the given equation 
of degree. 
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Given the above, an equation of degree in one variable, x, whose solutions are 

required (in the category  C
1

) will always be given in the form: 
 

fg (x) = 0
1

 
 
Finally, equations (4.3) shall be called the conjugate equations of (4.1). 
 

 
EXAMPLES 

 
1. Solve the equation of degree: 
 

  3
2

⋅ x
x

− 3
1

= 0
1

  (4.4) 
 

SOLUTION 
 
The given equation of degree can be rearranged to give: 
 

3
2

⋅ x
x

− 3
1

= 3x( )
2⋅x

− 3
1

= 3x − 3( )
2⋅x ⋅1

= 3x − 3( )
2x

  (4.5) 
 
Therefore, the conjugate equation of (4.4), from (4.5), are: 
 

  

         2x = 1
and   3x − 3 = 0  

⎫
⎬
⎭

  (4.6) 

 
The hyperthetis equation, 2x = 1, is solved to give: 
 

  
xh =

1
2

   (4.7) 

 
which is the hyperthetis solution, and the base equation, 3x – 3 = 0, is solved to 
give: 
 

xb = 1  (4.8) 
 
which is the base solution, of the given equation of degree (4.4). 
 
Verification. Setting the hyperthetis solution (4.7) and the base solution (4.8) in the 

given equation of degree (4.4), should give us the neutral element 0
1

. 
 
Indeed, 

 
3
2

⋅ 1
1/ 2

− 3
1

= 3
2⋅

1
2

− 3
1

= 3− 3( )
2⋅

1
2

⋅1

= 0
1

 QED. 
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2. Solve the equation of degree: 
 

  
x
x⎛

⎝⎜
⎞
⎠⎟

2

− 3
5

x
x⎛

⎝⎜
⎞
⎠⎟

+ 2
7

= 0
1

 (4.5) 

 
SOLUTION 

 
The given equation of degree can be rearranged to give: 
 

  
x
x⎛

⎝⎜
⎞
⎠⎟

2

− 3
5

x
x⎛

⎝⎜
⎞
⎠⎟

+ 2
7

= x2( )
x2

− 3 ⋅ x( )
5⋅x

+ 2
7

= x2 − 3x + 2( )
x2 ⋅5⋅x⋅7

= x2 − 3x + 2( )
35x3

 

 
whose conjugate equations are: 
 

  

        35x3 = 1
and   x2 − 3x + 2 = 0  

⎫
⎬
⎪

⎭⎪
 (4.6) 

 
Therefore, the hyperthetis solutions of (4.5) will be: 
 

  xh = 1 353   (4.7) 
 
and the base solutions of (4.5) will be: 
 

  

        xb1
= 2

and    xb2
= 1  

⎫
⎬
⎪

⎭⎪
  (4.8) 

 
Verification. Setting   xh = 1 353  and  xb = 2  in the given equation of degree (4.5), 
we get: 

 
2
1/353⎛

⎝
⎜

⎞

⎠
⎟

2

− 3
5

2
1/353⎛

⎝
⎜

⎞

⎠
⎟ + 2

7

= 4
1/35( )23

− 3
5

⋅ 2
1/353

+ 2
7

= 4 − 6 + 2( )
35 (1/353 )3

= 0
1

 QED. 

 
We proceed similarly with the other pair, 
 

  xh = 1 / 353   and xb2
= 1 

 
which is again verified in the equation of degree (4.5) 
 
3. Solve the equation of degree: 
 

  
x( )2

5x

− 4
5

= 0
1

  (4.9) 
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SOLUTION 
 
The given equation of degree can be rearranged to give: 
 

  
(x) 2

5 x

− 4
5

= x2( )
(5x )2

− 4
5

= x2 − 4( )
(5x )2 ⋅5

= (x2 − 4)
125x2

 
 
whose conjugate equations are: 
 

  

125x2 = 1
x2 − 4 = 0

⎫
⎬
⎪

⎭⎪
   (4.10) 

 
Therefore, the hyperthetis solutions of (4.9) are given by the first equation of (4.10) 
and are: 
 

xh1
= 1 / 125  and xh2

= − 1 / 125  (4.11) 

 
Similarly, the base solutions of (4.9) are given by the second equation of (4.10) and 
are: 

  
xb1

= 2   and xb2
= −2  (4.12) 

 
Therefore, the solutions of the given equation of degree (4.9) are (4.11) and (4.12). 
Obviously, verification of (4.9) can be achieved by taking one of the solutions (4.11) 
and one of the solutions (4.12), in any combination.  
 

 
NOTEWORTHY EQUATIONS OF DEGREE 

 
1. The equation of degree, of the form: 

α
κ

x
x⎛

⎝⎜
⎞
⎠⎟

+ β
λ

= 0
1

 

is a first order equation of degree in x
x

. 
 
2. The equation of degree, of the form: 

  
α
κ

x
x⎛

⎝⎜
⎞
⎠⎟

2

+ β
λ

x
x⎛

⎝⎜
⎞
⎠⎟

+ γ
μ

= 0
1

 

 is a second order equation of degree in x
x

. 
 
3. The equation of degree, of the form: 

  
α
κ

x
x⎛

⎝⎜
⎞
⎠⎟

3

+ β
λ

x
x⎛

⎝⎜
⎞
⎠⎟

2

+ γ
μ

x
x⎛

⎝⎜
⎞
⎠⎟

+ δ
ρ

= 0
1

 

is a third order equation of degree in x
x

. 
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4. The equation of degree, of the form: 

  
α
κ

1 x
x⎛

⎝⎜
⎞
⎠⎟

ν

+ α2

λ

x
x⎛

⎝⎜
⎞
⎠⎟

ν -1

+ α3

μ

x
x⎛

⎝⎜
⎞
⎠⎟

ν −2

+ ...... + αν

ρ

= 0
1

 

is an νth order equation of degree in x
x

. 
 
The above equations of degree, without the second part, give us the equivalent 

polynomials of  x
x

. 
 
NOTE: Besides the above mentioned equation of degree, many other interesting 
equations of degree exist, as the field of the mathematics of degree is unbounded 
and presents huge opportunities for mathematical research. 
 

 
5. SIMULTANEOUS EQUATIONS OF DEGREE 

 
EXAMPLE 

 

1. Solve these simultaneous equation of degree in category C
1

: 
 

  

x
2x+1

+ y
3

= x
−1

− y
x

3x
2

+ y + 1( )
3x

= x
y

+ 3
x

⎫

⎬
⎪

⎭
⎪

 (5.1) 

 
 equations (5.1), can be solved as follows: 
 

  

(x + y)
(2x+1)⋅3

= x − y( )
−1⋅x

3x + y + 1( )
1⋅2⋅3x

= x + 3( )
y⋅x

⎫

⎬
⎪⎪

⎭
⎪
⎪

    (5.2) or 

 

  

(x + y)
6x+3

= x − y( )
− x

3x + y + 1( )
6x

= x + 3( )
xy

⎫

⎬
⎪

⎭
⎪

     (5.3) 

 
 
From (5.3), we get the following sets of simultaneous equations:  
 
1) Hyperthetis equations, i.e., 

 

  

   6x + 3 = −x
   6x = xy

⎫
⎬
⎭

  (5.4) 
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and 2) Base equations, i.e., 
 

  

        x + y = x - y
  3x + y + 1 = x + 3

⎫
⎬
⎭

 (5.5) 

 
The solutions of the hyperthetis equations (5.4) are: 
 

xh = −
3
7

yh = 6

⎫

⎬
⎪

⎭⎪
 (5.6) 

 
Also, the solutions of the base equations (5.5) are: 
 

xb = 1
yb = 0

⎫
⎬
⎪

⎭⎪
 (5.7) 

 
The solutions (5.6) and (5.7) are the solutions of the given system (5.1). 
 
Verification: Substituting (5.6) and (5.7) in (5.1), we get: 
 

 

1
2⋅ −

3
7

⎛
⎝⎜

⎞
⎠⎟

+1

+ 0
3

= 1
−1

− 0
−

3
7

3 ⋅1
2

+ 0 + 1( )
3⋅ −

3
7

⎛
⎝⎜

⎞
⎠⎟

= 1
6

+ 3
−

3
7

⎫

⎬

⎪
⎪

⎭

⎪
⎪

 or 

 

 

1

1
7

+ 0
3

= 1
−1

− 0
−

3
7

3 ⋅1
2

+ 1
−

9
7

= 1
6

+ 3
−

3
7

⎫

⎬
⎪⎪

⎭
⎪
⎪

 or 

 

 

1+ 0( )
1
7

⋅3

= 1− 0( )
−1⋅ −

3
7

⎛
⎝⎜

⎞
⎠⎟

3 ⋅1+ 1( )
1⋅2⋅ −

2
7

⎛
⎝⎜

⎞
⎠⎟

= 1+ 3( )
6⋅ −

3
7

⎛
⎝⎜

⎞
⎠⎟

⎫

⎬

⎪
⎪

⎭

⎪
⎪

 or 

 

   1

3
7

= 1

3
7

4
−

18
7

= 4
−

18
7

⎫

⎬
⎪⎪

⎭
⎪
⎪

 QED. 
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6. DIFFERENTIATION OF FUNCTIONS OF DEGREE  
 
Consider the function of degree: 

yg = fg (x)  (6.1) 
 
 in the variable, x, whose associated conjugate equations are: 

yh = f2(x)
yb = f1(x) 

⎫
⎬
⎪

⎭⎪
 (6.2) 

 
Definition. We define the first derivative of the function of degree 

  
yg = fg (x)  

with respect to the variable x, denoted as yg( )′ x  as the first derivative with 

respect to x of the its associated conjugate equations, i.e., 
  

  

yg( )′ x =
yh( )′ x

yb( )′ , x
 

 
(6.4)

 
Based on the above definition, we can have higher order derivatives with respect to x 
in a similar manner. The same obviously holds for functions of degree with more than 
one variable. 
  

 
EXAMPLES 

 
1. Find the first derivative with respect to x of the following equation of degree: 

  
yg = 3

2

⋅ x
x

− 5
x

+ x
6

 (6.5) 
 

SOLUTION 
 
 The given equation of degree in its final state: 

  
yg = 3

2

⋅ x
x

− 5
x

+ x
6

= 3x − 5 + x( )
2⋅x ⋅x ⋅6

= 4x − 5( )
12x2

 
 
 the associated conjugate equations are: 

       yh = 12x2

  yb = 4x − 5

⎫
⎬
⎪

⎭⎪
 (6.6) 

 
whose first derivatives w.r.t. x are (respectively): 

  

  yh( )′ x = 24x

  yb( )′ x = 4

⎫

⎬
⎪

⎭
⎪

 (6.7) 
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These equations (6.7) are the required first derivatives w.r.t. x for the given 
equation of degree (6.5). 
 
 
2. Find the second derivative w.r.t. x of the following equation of degree: 
 

  yb = x3
2

+ 5
x4

+ 2
4

 (6.8) 
 

SOLUTION 
 
 The given equation of degree in its final state: 
 

  
yg = x3

2

+ 5
x4

+ 2
4

= x3( )
23

+ 5
x4

+ 2
4

= x3( )
8

+ 5
x4

+ 2
4

 

or yg = x3 + 7( )
32x4

 
 
 the associated conjugate equations are: 
 

  

 yh = 32x4

 yb = x3 + 7

⎫
⎬
⎪

⎭⎪
  (6.9) 

 
whose first derivatives w.r.t. x are (respectively): 

 

  

 ( yh ′) x = 128x3

( yb ′) x = 3x2

⎫
⎬
⎪

⎭⎪
 (6.10) 

 
the second derivatives w.r.t. x are (respectively): 

 

  

  ( yh ′′) x = 384x2

  ( yb ′′) x = 6x

⎫
⎬
⎪

⎭⎪
 (6.11) 

These equations (6.11) are the required second derivatives w.r.t. x (i.e., 
 

yg( )″ x ) 

for the given equation of degree (6.8). 
 
 
 

FUNCTIONS OF DEGREE 
 
Consider the function of degree: 
 

  
yg = fg (x1,x2 ,x3,....xν )  (6.12) 

 
 in the variables,   x1, x2 , x3,....xν ,  
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 whose associated conjugate equations are: 
 

yh = f2(x1, x2 , x3,....xν )
yb = f1( yh = f2(x1, x2 , x3,....xν )

⎫
⎬
⎪

⎭⎪
  (6.13) 

 
Based on what was mentioned above, the first derivative of the given function with 
respect to one of the variables,  xκ , i.e., 

yg( )′ xκ  

 
is the first derivative w.r.t.  xκ  of the equations of degree (6.13), i.e.: 

  

( yg ′)xκ
=

yh( )′xκ

yb( )′xκ

 (6.14) 

 
Similarly, the second derivative will be: 

  

( yg ′′)xκ
=

yh( )″xκ

yb( )″xκ

 (6.15) 

 
and in general, the νth derivative will be: 

  

( yg ) ν( )
xκ

=
yh( )(ν )

xκ

yb( )(ν )

xκ

 (6.16) 

 
In the manner mentioned above, we can find the partial derivatives of functions 
of degree with more than one variable. 
 

 
7. INTEGRATION OF FUNCTIONS OF DEGREE 

 
Consider the function of degree: 
 

yg = fg (x)  (7.1) 
 with variable x. 
 
Definition. We define as integration of degree that of thee equation of degree 
(7.1) and we denote it by: 
 

fg (x) ⋅ dx∫  
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the integrals of its associated conjugate equations are: 
 

  

yg (x) ⋅ dx =
fh(x) ⋅ dx∫
fb(x) ⋅ dx∫

∫
 
(7.2)

 
Where   fh(x)  and fb(x) , are the associated conjugate equations of 

  
fg (x) . 

Also, the integrals (7.2) will be called the conjugate integrals of the equation of 
degree (7.1). 
 
In the same manner, we can have double, triple, and so on, integrals of different 
equations of degree with more than one variable. 
 

EXAMPLES 
 
1. Find the integral of degree: 

 
  

[ ( x
x 2 − 1

+ ( x 2
3

) + 5
2

∫ ⋅ x + 4
7

) ] ⋅ d x  (7.3) 
 
The integral of degree (7.3), in its final state: 

  
[( x

x 2 − 1

+ ( x 2
3

) + 5
2

∫ ⋅ x + 4
7

)] ⋅ d x = x + x 2 + 5 x + 4( )
( x 2 − 1) ⋅3 ⋅2 ⋅7

∫ ⋅ d x = x 2 + 6 x + 4( )
4 2 x 2 − 4 2

∫ d x
 

So the conjugate integrals of the integral (7.3) are by definition: 

  

(42x2 − 42) ⋅ dx∫
(x2 + 6x + 4) ⋅ dx∫

⎫

⎬
⎪

⎭⎪
 (7.4) 

In (7.4), the first integral is the hyperthetis integral and the second the base integral. 
 
Working out (7.4) we get: 

 

  
42x2 − 42) ⋅ dx = 14x3 − 42x + c1(∫  

and: 

(x2 + 6x + 4) ⋅ dx =
x3

3
+ 3x2 + 4x + c2∫  

 where c1 and c2 are the integration constants. 
 

Therefore, solution of the given integral (7.3) comes from the following 
equations: 

 

  

14x3 − 42x + c1

x3

3
− 3x2 + 4x + c2

⎫

⎬
⎪

⎭
⎪

  (7.5) 
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2. Find the integral of degree: 
 

  
(x 2

3x

+ x5
x

+ 1
x

) ⋅ dx∫  (7.6) 
 
 The integral of degree (7.6), in its final state: 
 

  
(x 2

3x

+ x5
x

+ 1
x

) ⋅ dx = [x2]
(3x )2

+ (x5)
x5

+ 1
x

]dx =∫∫ x2 + x5 + 1( )dx
9x2 ⋅x5 ⋅x

∫ = x5 + x2+1( )⋅ dx
9x8

∫  (7.7.) 
 

So the conjugate integrals of the integral (7.7) are: 
 

9x8 ⋅ dx∫
     x5 + x2 + 1( )⋅ dx∫

⎫

⎬
⎪

⎭⎪
 (7.8) 

 
From the first integral (7.8), we have: 

 
9x8 ⋅ dx = x9 + c1∫  

 
and from the second integral (7.8), we have: 
 

  
x5 + x2 + 1( )⋅ dx =

x6

6
+

x3

3
+ x + c2∫  

  
 where c1 and c2 are the integration constants. 

 
Therefore, solution of the given integral (7.6) comes from the following 
equations (7.9): 

 

  

x9 + c1

       
x6

6
+

x3

3
+ x + c2

⎫

⎬
⎪

⎭
⎪

 (7.9) 

 
 

8. DIFFERENTIAL EQUATIONS OF DEGREE 
 

Definition. An νth order differential equation, in category C
1

, is an equation of 
degree an unknown function, yg , with its variable, x, and its derivatives up to 

order ν, namely: yg : ′yg ,  ′′yg , .... yg
ν( ). I.e., an equation of the form:  

  
f (x, yg , ′yg , ′′yg ,....yg

ν( )) = 0
1

  (8.1) 
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The solution, or integral of (8.1) is two equations: 
 

 
yh(x)
yb(x)
 

 
 
(8.2)

 
The first is the hyperthetis solution and the second the base solution, and they 
satisfy (8.1) by definition. 
 
 

EXAMPLES 
 
1. Solve the differential equation of degree: 
 

  ′′yg + 3
x

⋅ ′yg + 5
2

⋅ yg + x
1

= 0
1

 (8.3) 
 

SOLUTION 
 
The given differential equation of degree is obviously second order. 
For its solution we proceed as follows:  

 

y g =
y h

y b

′y g =
′y h

′y b

′′y g =
′′y h

′′y b

⎫

⎬

⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪

 (8.4) 

 
Substituting (8.4) in (8.3) we get: 
 

  
′′yb

′′yh

+ 3
x

⋅ ′yb

′yh

+ 5
2

⋅ yb

yh

+ x
1

= 0
1

⇒ ′′yb + 3 ′yb + 5yb + x( )
′′yh ⋅x ⋅ ′yh ⋅2⋅ yh ⋅1

= ′′yb + 3 ′yb + 5yb + x( )
′′yh ⋅ ′yh ⋅ yh ⋅2x

= 0
1

 
 
The above equation is associated with the following conjugate differential 
equations of (8.3): 
 

   

    ′′yh ⋅ ′yh ⋅ yh ⋅ 2x = 1

    ′′yb + 3 ′yb + 5yb + x = 0

⎫
⎬
⎪

⎭⎪
 (8.5) 

 
The first is the differential equation of the hyperthetis and the second the 
differential equation of the base of the differential equation of degree (8.3). 
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Therefore, by solving the differential equations (8.5) in the familiar manner, we 
get the required solution of the differential equation of degree (8.3). 
 
Verification. Solving   yh(x)  and yb(x)  with reference to (8.4), we continue as usual 
to find, 

  
yg ,  ′yg ,  ′′yg . Substituting these values in the given (8.4), we should be able to 

rearrange to get  0
1

. 
 
 

9. SEQUENCES OF DEGREE 
 
The function: 
 

agν
= fg (v)  (9.1) 

 

 where 

 

agν
=

ahν

abν

 and v = 1, 2, 3, … 

constitutes a sequence of degree with general term, agν
. 

 
ahν

shall be called the hyperthetis general term and abν
 the base general term of 

the sequence of degree (9.1). 
 
In addition, a sequence of degree is by definition equivalent to the hyperthetis 
sequence and the base sequence, which shall be called, conjugate sequences of the 
sequence of degree (9.1), i.e.: 
 

  

agν
= fg (ν) =

ahν
= fh(ν)

abν
= fb(ν)

 
(9.2)

 
The study therefore of a sequence of degree is directly linked to the study of its 
conjugate sequences. 
In general then, we can say that a sequence of degree, e.g. (9.1), converges in the 
hyperthetis or converges in the base or converges in both or diverges in the 
hyperthetis and so on, depending on the conjugate sequences (9.10). 
 

 
EXAMPLES 

 
 
1. Find the first three terms of the following sequence: 
 

  
agν

= ν 3( )
ν2 −1

+ 4
ν3

+ 5
7

 (9.3) 
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SOLUTION 
 
The given sequence of degree (9.3) can be rearranged to become: 
 

  
agν

= ν 3( )
ν2 −1

+ 4
ν3

+ 5
7

= ν 3 + 4 + 5( )
(ν2 −1)⋅ν3 ⋅7

= (ν 3 + 9)
7ν5 −7ν3

 

 
Consequently, the conjugate sequences of (9.3), are: 
 

  

                  ahν
= 7ν5 − 7ν 3

    abν
= ν 3 + 9

⎫

⎬
⎪

⎭⎪
 (9.4) 

 
 So, for ν = 1 the first of (9.4) gives us: 
 

  
ah1

= 7 ⋅15 − 7 ⋅13 = 7 − 7 = 0  

 
for ν = 2: 

 

  
ah2

= 7 ⋅ 25 − 7 ⋅ 23 = 224 − 56 = 168  

 
and for ν = 3: 

 

  
ah3

= 7 ⋅ 35 − 7 ⋅ 33 = 1701− 63 = 1638 

 
Also, the second of (9.4), for v = 1 gives us: 

 

  
ab1

= 13 + 9 = 1+ 9 = 10  

 
for ν = 2: 

 

  
ab2

= 23 + 9 = 8 + 9 = 17  

 
and for ν = 3: 

 

  
ab3

= 33 + 9 = 27 + 9 = 36  

 
 Therefore the first three terms of the given sequence of degree (9.3) are: 
 

  

 ah1
= 0,  ah2

= 168,  ah3
= 1638

  ab1
= 10,  ab2

= 17,  ab3
= 36

⎫
⎬
⎪

⎭⎪
 (9.5) 

 
 



 36

2. Find the 17th term of the following sequence: 

agν
= ν 2

−ν

+ νν
ν

 (9.6) 

 
SOLUTION 

 
The given sequence of degree (9.6) can be rearranged to become: 

  
agν

= ν 2
− ν

+ ν ν
ν

= ν 2( )
-ν( )2

+ ν ν( )
ν( )ν

= ν 2 + ν ν( )
ν 2 ⋅ν ν

 

or   agν
= νν + ν 2( )

ν ν+2( )

 

 
Consequently, the conjugate sequences of (9.6), are: 

  

            ahν
= ν ν + 2( )

          abν
= νν + ν 2

⎫

⎬
⎪

⎭
⎪

 (9.7) 

 
So for v = 17, we get: 

ah17
= 17 17+2( ) = 1719  

and: 

  
ab17

= 1717 + 172 = 172(1715 + 1)  

or ab17
= 289(1715 + 1)  

 
Therefore, the 17th term of the given sequence of degree (9.6), is 

  

ah17
= 1719

        ab17
= 289(1715 + 1)

⎫

⎬
⎪

⎭⎪
 (9.8) 

 
10. SERIES OF DEGREE 

 
Following the same reasoning used for sequences of degree, we can consider series of 
degree. 
 
Consider the following series of degree: 

  

g
n=1

∞

∑ 1
n3 +3

n2( )
n

+ 1
5

  (10.1) 

 
The series (10.1) can be rearranged to become: 

  

g
n=1

∞

∑ 1
n3 +3

n2( )
n

+ 1
5

= g
n=1

∞

∑ 1
n3 +3

n2 + 1( )
n⋅5 = g

n=1

∞

∑ 1
n3 +3

n2 + 1( )
5n = g

n=1

∞

∑ [1: (n2 + 1)]
(n3 +3):5n
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So we have: 
 

  

               h
n=1

∞

∑ n3 + 3
5n

          b
n=1

∞

∑ 1
n2 + 1

⎫

⎬

⎪
⎪

⎭

⎪
⎪

 (10.2) 

 
The relationships (10.2) are, as usual, the conjugate series of the given series of 
degree (10.1). The first of equations (10.2) is the hyperthetis series and the 
second, the base series of the given series of degree (10.1). 
 
Finally, study of the given series of degree (10.1) depends on the study of the 
conjugate series (10.2), regarding its convergence, divergence etc. 
 
 
11. THE FOUR BASIC OPERATIONS ON THE CONJUGATE FUNCTIONS 
 
Consider the function of degree: 
 

  
yg = fg (x)   (11.1) 

 
in the variable x, whose conjugate equations are: 
 

  

yh = fh(x)
yb = fb(x)

⎫
⎬
⎪

⎭⎪
  (11.2) 

 
Definition.  a. The function 

  
yg ,+ , i.e.: 

yg ,+ = fb(x) + fh(x)  
    will be called conjugate addition of (11.1). 
 
   b. The function 

  
yg ,− , i.e.: 

  
yg ,- = fb(x) − fh(x)  

    will be called conjugate subtraction of (11.1). 
 
   c. The function   

yg ,⋅ , i.e.: 

  
yg ,⋅ = fb(x) ⋅ fh(x)  

    will be called conjugate multiplication of (11.1). 
 

   d. The function   
y,g : , i.e.:  

  
yg ,: = fb(x) : fh (x)  

    will be called conjugate division of (11.1). 
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NOTEWORTHY OBSERVATION 
 
Suppose that (11.1) is for example an equation of degree, a differential equation 
of degree, an integral equation of degree, a sequence of degree and so forth, then 
we would have the conjugate operations (a), (b), (c), (d). 
 
The conjugate forms of degree, in the basic operations just witnessed, play a vital role 
in the mathematics of degree as they further deepen the field open to research. This 
becomes immediately obvious with the following example: 
 
Lets take an equation of degree for example. After working out its final form, the 
equation is «split» into its two conjugate equations (the hyperthetis equation and the 
base equation) whose solutions give us the solution of the given equation of degree. 
 
With the introduction of the basic operations on the conjugate functions - (a), (b), (c), 
(d) - new equations result, with new solutions that enable research into their possible 
relation.    
 
The same holds for sequences of degree, series of degree etc... 
 
 

EXAMPLE 1 
 
Given the function of degree: 
 

  
Zg = 3xy

x+ y

+ 2
x

  (11.3) 
 
 in the variables x and y. 
 
Find 

  
Zg ,+ , 

  
Zg ,− , 

  
Zg ,⋅ ,   

Zg ,:  
 

SOLUTION 
 
The function of degree (11.3) can be rearranged to give: 
 

  
Zg = (3xy + 2)

( x+ y )x

= (3xy + 2)
x2 + xy

  (11.4) 
 
whose conjugate equations are: 
 

  

   Zh = x2 + xy

    Zb = 3xy + 2

⎫
⎬
⎪

⎭⎪
  (11.5) 

 
Consequently: 
 
1. 

  
Zg ,+ = Zb + Zh = (3xy + 2) + (x2 + xy) = 4xy + 2 + x2  
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2. 
  
Zg ,− = Zb − Zh = (3xy + 2) − (x2 + xy) = 2xy + 2 − x2  

 
3. Zg ,⋅ = Zb ⋅ Zh = (3xy + 2) ⋅ (x2 + xy)  
 

4. 
  
Zg ,: =

Zb

Zh

=
3xy + 2
x2 + xy

 

 
EXAMPLE 2 

 
Given the sequence of degree: 

agv
=

ν

vν −v⎛
⎝⎜

⎞
⎠⎟

 

 
Find the limit as (v → ∞ ), of the sequence that results from its conjugate addition. 
 

SOLUTION 
 
From the given sequence of degree, we have: 

   

          ahν
= v     (hyperthetis sequence)

     abν
= νν − ν  (base sequence)

 

 
So, the sequence 

  
agν ,+

 that results from the conjugate addition of the given 

sequence is: 

  
agν ,+

=
 
abν

+ ahν
= νν − ν + ν = νν , i.e. 

agν ,+
= νν  

 
Of course, the limit of  

  
agν ,+

= νν  as (v → ∞ ) is: 

lim νν

ν→∞
= 1 

which is the required solution. 
 
 
 

12. PRIME NUMBERS OF DEGREE 
 
In the mathematics known hitherto, the numbers, 
 

1, 5, 7, 13, 17, etc... 
 
are prime numbers. 
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But in the mathematics of degree, because the numbers we use are numbers of 
different degree, we must give the following definitions: 
 

Definition. A number of degree a
κ

 shall be called, base prime, when its base, α, is 
a prime number. 

 

Definition. A number of degree a
κ

 shall be called, hyperthetis prime, when its 
hyperthetis, κ, is a prime number. 

 

Definition. A number of degree a
κ

 shall be called, complete prime, when its 
hyperthetis, κ, and its base, α, are prime numbers. 

 
So, based on the first definition regarding the base, base prime numbers are:  

 3
7

,  7
2

,  17
5

,  13
4

,  etc... 
 
Based on the second definition regarding the hyperthetis, hyperthetis prime numbers 
are:  
 

 4
3

,  3
7

,  13
5

,  8
17

,  etc... 
 
Finally, based on the third definition, complete prime numbers are:  
 

 17
7

,  13
5

,  7
19

,  11
7

,  etc... 
 

Note: The numbers of degree a
κ

 and κ
a

, are called inverse numbers of degree. 

Now, if  a
κ

 is a complete prime, then its inverse κ
a

 will also be a complete prime. 
 
Finally, as we observe, in the mathematics of degree, the mathematical field of 
«Number theory of degree» is broader than the equivalent field of «Number 
theory» of classical mathematics, hitherto known. 
  
 

13. EQUAL AND UNEQUAL NUMBERS OF DEGREE 
 

Definition. Two numbers od degree α
κ

 and β
λ

, are equal, i.e.: 
 

α
κ

 = β
λ

 
 
  when: 

   
         κ = λ
and   α = β

⎫
⎬
⎭

  (13.1) 
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Definition. A number of degree α
κ

 is bigger than another number of degree β
λ

, 
i.e.: 

α
κ

 > β
λ

 
 

when: 

   
         κ = λ
and   α > β

⎫
⎬
⎭

  (13.2) 

 

Definition. A number of degree α
κ

 is smaller than another number of degree β
λ

, 
i.e.: 

α
κ

 < β
λ

 
 

when: 

   
         κ = λ
and   α < β

⎫
⎬
⎭

  (13.3) 

 
 

EXAMPLE 
 

1. Solve, in category  C
1

, the inequality: 
 

  (x2 + 1)
      κ 2

+ 2
1

> x2 + x
κ

  (13.4) 
 

SOLUTION 
 
From inequality (13.4), we get: 
 

  
x2 + 1+ 2( )

κ 2 ⋅1

> x2 + x( )
1⋅κ

 or 

  x2 + 3( )
κ 2

> x2 + x( )
κ

 (13.5) 
 
From (13.5), we must have: 
 

  

         κ 2 = κ
and   x2 + 3 > x2 + x

⎫
⎬
⎪

⎭⎪
⇒  (13.6) 

 
         κ = 1
and  x < 3

⎫
⎬
⎭

 (13.7) 

 
which is the required solution. 
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Verification: From (13.7), take for example κ = 1 and x = 2, then the inequality 
(13.4) gives: 
 

     
 
22 + 1( )

     12

+ 2
1

> 22 + 2
1

 or 
 

 
(22 + 1+ 2)

12 ⋅1

> 22 + 2( )
1⋅1

 or 
 

     7
1

> 6
1

 or 
 

    7 > 6 QED. 
 
 

DIFFERENT TYPES OF NUMBER OF DEGREE 
 

If  a
κ

 is a number of degree, then:  
 
Definition: The number: 
 

nα +κ = α +κ  
 

 is called, an additive of the number of degree a
κ

. 
 
Definition: The number: 
 

nα −κ = α −κ  
 

 is called, a subtractive of the number of degree a
κ

. 
 
 
Definition: The number: 
 

nα ⋅κ = α ⋅κ  
 

 is called, a multiplicative of the number of degree a
κ

. 
 
Definition: The number: 
 

nα :κ = α :κ  
 

 is called, a divisional of the number of degree a
κ

. 
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Definition: Two numbers  a
κ

 and β
λ

, are incompatible a
κ

# β
λ

, when: 
 

κ ≠ λ  
 
where, α and β can be equal or not. 
 

In addition, if Α and Β are the moduli of the numbers of degree a
κ

 and β
λ

, i.e.:  

Α = α2 +κ 2  
 

Β = β2 + λ2  
and: 
 

a. Α > Β 
b. Α = Β 
c. Α < Β 

then, from the two incompatible numbers a
κ

 and β
λ

, for the above three cases (a), (b), 

(c),  a
κ

 shall be called, 
 

a. «In modulus», bigger than β
λ

 

b. «In modulus», equal to β
λ

 

c. «In modulus», smaller than β
λ

 
 
 

14. COMPLEX NUMBERS OF DEGREE  
BASIC CONCEPTS AND DEFINITIONS 

 
The notation, 

  z
zk

 (14.1) 

 where z and  z
zk

, are complex numbers of the form: 
 

z = x + iy  
and zκ = xκ + iyκ  

 
 (x, y,  xκ ,  yκ  real numbers) 
  
 constitutes a complex number of degree, with base, z, and hyperthetis,  zκ . 
 
The hyperthetis,  zκ , represents the complex degree to which the complex 
number of degree (14.1) belongs.  
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So, the hitherto known complex numbers of degree, e.g., 
 

 4 + 2i,    5 − 2i,   −3 + 6i  etc...  (14.2) 
 

are by definition complex numbers of degree 1, category C
1

. That is, the 
hyperthetis of (14.2) is considered to have a value of unity, which is omitted for 
convenience. 
 
Its worth noting that the hyperthetis, zκ , can be a complex number, without its real or 
imaginary part. 
 
 

AXIOMATIC FOUNDATION OF COMPLEX NUMBERS OF DEGREE, 

CATEGORY C
1

. 
 

15. BASIC OPERATIONS ON COMPLEX NUMBERS OF DEGREE 
 
   1. Addition 

z1 +
zκ

z2

zλ

= z1 + z2( )
zκ ⋅zλ

 
 
   2. Subtraction 

z1 −
zκ

z2

zλ

= z1 − z2( )
zκ ⋅zλ

 
 
   3. Multiplication 

z1 ⋅
zκ

z2

zλ

= z1 ⋅ z2( )
zκ ⋅zλ

 
 
   4. Division 

z1 :
zκ

z2

zλ

= z1 : z2( )
zκ :zλ

 
 

If   z1

zκ

,   z2

zλ

,   z3

zμ

 are elements of the set Cg  of complex numbers of degree, category    C
1

, 
then: 

a.   z1 +
zκ

z2

zλ

  and    z1 ⋅
zκ

z2

zλ

 a1

κ
⋅ a2

λ
 belong to Cg (closure property). 

 

b.   z1 +
zκ

z2

zλ

= z2

zλ

+ z1

zκ

 (commutative property). 
 

c.   z1 + (
zκ

z2

zλ

+ z3) =
zμ

(z1 +
zκ

z2 )
zλ

+ z3

zμ

 (associative property). 
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d.   z1 ⋅ (
zκ

z2

zλ

⋅ z3) =
zμ

(z1 ⋅
zκ

z2 )
zλ

⋅ z3

zμ

 (associative property). 
 

e.   z1 ⋅
zκ

z2

zλ

= z2

zλ

⋅ z1

zκ

 (commutative property). 
 

f.   z1

zκ

⋅ (z2

zλ

+ z3

zμ

) = z1

zκ

⋅ (z2 + z3

zλ ⋅zμ

) and not z1

zκ

⋅ (z2

zλ

+ z3

zμ

) = z1

zκ

⋅ z2

zλ

+ z1

zκ

⋅ z3

zμ

 (non-distributive  
 property). 
 

g.  z1

zκ

+ 0
1

= 0
1
+ z1

zκ

= z1

zκ

 

0
1

 is called the identity element of addition. 
 

h. z1

zκ

⋅1
1

= 1
1
⋅ z1

zκ

= z1

zκ

 

1
1
 is called the identity element of multiplication. 

 

i. For every complex number of degree z1

zκ

 there is only one complex number of  

 degree  z
zρ

 of  Cg , such that: 

z1

zκ

+ z
zρ

=0
1

 

  z
zρ

 is called the additive inverse of z1

zκ

 a 1

κ
 and is denoted by: 

  −z1

1/ zκ

, where  zρ =
1
zκ

. 

 

j. For every complex number of degree z1

zκ

≠ 0
1

 there is only one complex number of 

degree  z
zρ

 of  Cg , such that:  

z1

zκ

⋅ z
zρ

= z
zρ

⋅z1

zκ

= 1
1

 

  z
zρ

 is called the multiplicative inverse of z1

zκ

 a 1

κ
 and is denoted by: 

1

z
zρ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1/ zκ

 

 

k. Every complex number of degree, category c
1

, when a term is moved from 
one side of the equation to the other, then, the sign of the base changes and 
the hyperthetis takes the value of its inverse. 
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IDENTITIES AND DEFINITIONS 
 
The identities and definitions developed for real numbers of degree are also valid 
for complex numbers of degree, so to avoid unnecessary repetition, they will be 
omitted here. 
  

EXAMPLES 
1. Calculate the sum: 

  
A = 3+ 2i( )

2− i

+ 5 − 2i( )
2+ i

+ (10 + 3i)
3i

 
As we know, we get:  

  
A = 3 + 2i( )

2 − i

+ 5 − 2i( )
2 + i

+ 10 + 3i( )
3i

= 3 + 2i + 5 − 2i + 10 + 3i( )
( 2 − i )( 2 + i )⋅3i

= 18 + 3i( )
15i

 
 
2. Calculate the product: 

A = 3+ 2i( )
3

3− 2i( )
i

 
We get: 

  
A = 3+ 2i( )

3

3− 2i( )
i

= 32 + 22( )
3⋅i

= 13
3i

 
 
3. Calculate the ratio: 

A =
(3i)

i

3
i  

We get: 

  
A =

(3i)
i

3
i =

3i
3

⎛
⎝⎜

⎞
⎠⎟

i / i

= i
1

= i  

 
4. Prove that: 

e
i2

⋅ e−1
i2

= 1 
We get: 

e
i2

⋅ e−1
i2

= e0
i4

= 1
1

= 1 
 
5. Calculate the sum: 

  
A = 3+ 2i( )⎡⎣ ⎤⎦

2
3

+ 5 − 6i( )⎡⎣ ⎤⎦
3
4

 

As we know, we get:  

  
A = 3+ 2i( )⎡⎣ ⎤⎦

2
3

+ 5 − 6i( )⎡⎣ ⎤⎦
3
4

= 3+ 2i( )2
32

+ 5 − 6i( )3
43

= 3+ 2i( )2
9

+ (5 − 6i)3
64

= ...  

 
6. Calculate the sum: 

  
A = 3− 2i( )

4+5i
3 + 5 + 6i( )

4−5i
3  
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As we know, we get:  

  
A = 3− 2i( )

4+5i
3 + (5 + 6i)

4−5i
3 = 3− 2i3

4+5i3

+ 5 + 6i3
4−5i3

=  

  
= 3 − 2i3 + 5 + 6i3( )

4+5i3 ⋅ 4−5i3

= 3 − 2i3 + 5 + 6i3( )
42 +523

=  

  
= 3− 2i3 + 5 + 6i3( )

413

 

 
16. GRAPHICAL REPRESENTATION OF COMPLEX NUMBERS OF 

DEGREE 
 
Consider the complex number of degree: 

 
zg = xb + iyb( )

xh + iyh

 (16.1) 
 where: 

zb = xb + iyb  
  is the base and:  

zh = xh + iyh  
  is the hyperthetis. 
 i.e.: 

zg = zb

zh

= xb + iyb( )
xb + iyh

 
 
Consider figure 5, a 4-dimensional system of orthogonal coordinates (xb , yb ,xh , yh ) . 
 

 
fig. 5 

 

 ′yh yh  and  ′yb yb  are the imaginary axes, while ′xbxb  and ′xhxh  are the real axes. So, a 
complex number of degree, e.g.,  

  
zg = 3 + 5i( )

6+2i

  (16.2) 
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for which:   xb = 3 ,   yb = 5,   xh = 6  and yh = 2 , is represented on the   (xb , yb ,xh , yh )  
orthogonal coordinate system as the point Μ with coordinates, (3, 5, 6, 2). 
 
So, while the hitherto known complex numbers are represented on a plane (2-
dimensional space), complex numbers of degree are represented – by contrast – 
in 4-dimensional space, i.e., in the orthogonal coordinate system (xb , yb ,xh , yh ) . 
 
The modulus of a complex number of degree, zg , is:  

  
zg = xb

2 + yb
2 + xh

2 + yh
2  

 
and represents the length 

  
(OM ) = zg  (figure 5). 

 
 

17. COMPLEX FUNCTIONS OF DEGREE 
TRANSFORMATION OF COMPLEX FUNCTIONS OF DEGREE 

 
The notation: 

wg = fg (zg )  (17.1) 
 

represents a complex function of degree, where: 
 

wg = wb

wh

 

( wb = ub + ivb  and wh = uh + ivh ) 
Also: 

zg = zb

zh

 

( zb = xb + iyb  and zh = xh + iyh ) 
 
So, equation (17.1), constitutes a transformation on a complex function of degree, 
with the condition that: 
 

ub = ub(xb , yb )  
 

vb = vb(xb , yb )  
 

uh = uh(xh , yh )  
 

vh = vh(xh , yh )  
 

Consider the transformation of degree: 

  
wg = 3

2

zg + 6
2

 (17.2) 
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which can also be written as: 

wb

wh

= 3
2

⋅ zb

zh

+ 6
2

⇔  
 

  
ub + iub( )

uh + ivh

= 3
2

xb + iyb( )
xh + iyh

+ 6
2

⇔  
 

  
ub + iub( )

uh + ivh

= 3(xb + iyb ) + 6⎡⎣ ⎤⎦

2( xh + iyh )⋅2

⇔  
 

  
ub + ivb( )

uh + ivh

= 3xb + i3yb + 6( )
4xh + i4 yh

 (17.3) 
From (17.3) we get: 

  

   uh + ivh = 4xh + i4yh

 ub + ivb = 3xb + 6 + i3yb

⎫
⎬
⎪

⎭⎪
 (17.4) 

 
a) From the first of these equations, (17.4), we get: 
 

uh = 4xh

vh = 4yh

⎫
⎬
⎪

⎭⎪
 (17.5) 

 
Consider now two orthogonal frames of reference, (xh , yh )  and (uh ,vh ) , figure 6: 

 
fig. 6 

A point, e.g. Μ (2,3) in the coordinate system, (xh , yh )  - depending on (17.5) - has an 
image,  ′M , in the coordinate system, (uh ,vh ) , with coordinates: 
 

  

uh = 4 ⋅ xh = 4 ⋅ 2 = 8
vh = 4 ⋅ yh = 4 ⋅3 = 12  

 
i.e., the point  ′M (8,12), and in general, a set of points, C, in the coordinate system 
(xh , yh )  has a corresponding image, ′C , in the coordinate system (uh ,vh ) . 
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b) From the second of these equations, (17.4), we get: 
 

  

  ub = 3xb + 6
   vb = 3yb

⎫
⎬
⎪

⎭⎪
 (17.6) 

 
Consider now two orthogonal frames of reference, (xh , yh )  and (uh ,vh ) , figure 7: 

 
fig. 7 

 
A point, e.g. Μ (2,3) in the coordinate system, (xh , yh )  - depending on (17.5) - has an 
image,  ′M , in the coordinate system, (uh ,vh ) , with coordinates: 
 

  ub = 3 ⋅ 2 + 6 = 12
    vb = 3 ⋅3 = 9

 

 
i.e., the point  ′M (12,9), and in general, a set of points, C, in the coordinate system 

  (xh , yh )  has a corresponding image, ′C , in the coordinate system (uh ,vh ) - depending 
of course on equations (17.6) 
 
So, the transformation of degree (17.2) represents two transformations, figures 6 
& 7, which shall be called the conjugate transformations of the given 
transformation.  
 
 

18. COMPLEX NUMBERS OF DEGREE, SECOND TYPE (Ι2) 
 
Definition: we define complex numbers ZG of degree (second type, Ι2) as complex 
numbers of degree of the form: 
 

ZG = α
κ

+ β
λ

⋅ i
i (18.1)

where α
κ

 is the real part and β
λ

 is the imaginary part. 
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Complex numbers ZG of degree (second type, Ι2), undergo the four basic 
mathematical operations (addition, subtraction, multiplication, division) of category 

 C
1

 and  C
0

. 
 
Definition:  We define as the additive of the complex number, ZG ,+ , of a complex 
number ZG of degree (second type, Ι2) (18.1) as the number: 

 

  
ZG ,+ = (α +κ ) + (β + λ)(i + i) ⇒  

 

  
ZG ,+ = (α +κ ) + 2(β + λ)i (18.5)

 
Example: If we have: 

ZG = 4
6

+ 5
2

⋅ i
i

 (18.6) 
 
then 

  
ZG ,+ , is: 

ZG ,+ = (4 + 6) + (5 + 2)(i + i) ⇒

ZG ,+ = 10 + 7 ⋅ 2i ⇒

ZG ,+ = 10 + 14i

  (18.7) 

 
The number 

  
ZG ,+  of (18.7) is represented on the plane EG ,+  of the additive 

complex numbers ZG ,+  by the point Μ(10,14), figure 7(a).  
 

 
fig. 7(a) 
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PART TWO 
AXIOMATIC FOUNDATION OF REAL NUMBERS OF DEGREE, 

CATEGORY C
0

 
 

1. BASIC OPERATIONS ON NUMBERS OF DEGREE, CATEGORY  C
0

 
 

 1. Addition 

   
  
a 1

κ

+ a2

λ

= a1 + a2( )
κ + λ

 
 
   2. Subtraction 

   
  
a 1

κ

− a2

λ

= a1 − a2( )
κ + λ

 
 
   3. Multiplication 

   
  
a1

κ

⋅ a2

λ

= a1 ⋅ a2( )
κ +λ

 
 
   4. Division 

   
  
a1

κ

: a2

λ

= a1 : a2( )
κ −λ

 
 
 
Based on the above, it can be shown that: 

If   a1

κ
,  a2

λ
,  a

μ

3 are elements of the set Sg
′  of real numbers of degree, category   C

0

, then: 
 

 a. a 1

κ
+ a2

λ
 and a1

κ
⋅ a2

λ
 belong to Sg

′  (closure property). 
  

 b. a 1

κ
+ a2

λ
 = a2

λ
+ a 1

κ
 (commutative property). 

 

 c.   a
κ

1+ (a2

λ
+ a

μ

3) = (a
κ

1+ a2

λ
) + a

μ

3  (associative property). 
  

d.  a
κ

1⋅ (a2

λ
⋅ a

μ

3) = (a
κ

1⋅ a2

λ
) ⋅ a

μ

3  (associative property). 
 

e. a 1

κ
⋅ a2

λ
= a2

λ
⋅ a 1

κ
 (commutative property). 

       

 f.  a1

κ
⋅ (a2

λ
+ a3

μ

) = a1

κ
⋅ (a2 + a3

λ + μ

)  and not a1

κ
⋅ (a2

λ
+ a3

μ

) = a 1

κ
⋅ a2

λ
+ a1

κ
⋅ a 3

μ

 (non-distributive  
     property). 
 

 g. a 1

κ
+ 0

0
= 0

0
+ a 1

κ
= a 1

κ
. 

0
0

 is called the identity element of addition. 
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 h. a 1

κ
⋅1

0
= 1

0
⋅ a 1

κ
= a 1

κ
. 

1
0
 is called the identity element of multiplication. 

 

i. For every real number of degree a1

κ
 there is only one real number of degree a

ρ

 

of Sg
′ , such that:   

a 1

κ
+ a

ρ

= 0
0

. 
 

  a
ρ

 is called the additive inverse of a 1

κ
 and is denoted by: 

 

a
ρ

= −a
−κ

1  
 

 j.  For every α1

κ

≠ 0
0

, there is only one real number of degree a
ρ

 of  Sg
′ , such that: 

 

a 1

κ
⋅ a

ρ

= a
ρ

⋅ a 1

κ
= 1

0
. 

 

  a
ρ

 is called the multiplicative inverse of a 1

κ
 and is denoted by: 

 

α
ρ

=
1
a1

⎛
⎝⎜

⎞
⎠⎟

−κ

 

  
 k. If: 
 

a 1

κ
+ a2

λ
= a3

μ

+ a4

ν
 

   
  then: 

a 1

κ
+ a2

λ
− a3

− μ

= a4

ν
 

 

a 1

κ
= a3

μ

+ a4

ν
− a2

λ
 

 

I.e., in an equality with real numbers of degree in category C
0

, when a term is 
moved from one side of the equation to the other, then, the sign of the base and 

the hyperthetis changes, something that does not happen in category  C
1

 that we 
dealt with previously. 
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2. IDENTITIES AND DEFINITIONS 
 

Identity 1: If a
κ

 is a real number of degree, then we have: 
 

a
κ

= α
0
⋅1

κ
= α ⋅1

κ
 

 
Identity 2: According to the known, we have: 
 

a
κ

= a
κ

2

 
 

Identity 3: 
 

a
κν

= aν

κ
ν

 
 

Identity 4: Two real numbers of degree  a
κ

 and β
λ

 are equal, 
 

a
κ

= β
λ

 
 

  if and only if: 
 

      a = β
and    κ = λ

⎫
⎬
⎭

 

 
Identity 5: 
 

αν
μ

= αν
μ⋅ν

 
 

Identity 6: In category  C
0

, by definition: 
 

 
a
κ⎛

⎝
⎞
⎠

ν
μ

= a
κ + μ

⋅ a
κ + μ

⋅ a
κ + μ

⋅ ⋅ ⋅ a
κ + μ

ν − times
1 244 344 = aν

ν (κ + μ )

 

 
Identity 7: We have: 
 

a
κ

+ a
κ

= a + a( )
κ +κ

= 2a
2κ⎛

⎝
⎞
⎠  and not 

a
κ

+ a
κ

= 2 a
κ

 
 

Identity 8: If: 
 

 a = a1 + a2 + a3 + ... + aν  
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  then by definition: 
 

 a
κ

= (a1 + a2 + a3 + ... + aν

κ
)  

 
 
 

EXAMPLES 
 

Calculate, in the category  C
0

: 
 
1. The sum: 

 

A = 2
3

+ 3
5

− 5
1,5

+ 2
4

− 1
0

 
 

 As we know, we get: 
 

  
A = 2

3

+ 3
5

− 5
1,5

+ 2
4

− 1
0

= 2 + 3− 5 + 2 − 1( )
3+5+ (1,5)+4+0

= 1
10,5

 
 
2. The sum: 

 

A = −4
−3

+ 8
−4

− 2
5

 
 
We get: 

 

  A = −4
−3

+ 8
−4

− 2
5

= (−4 + 8 − 2)
−3+(−4)+5

= 2
−2

 
 
3. The product: 

 

A = 2
5

⋅ 3
−6

⋅ 4
−1

⋅ 6
0

 
 
We get: 

 

  
A = 2

5

⋅ 3
−6

⋅ 4
−1

⋅6
0

= 2 ⋅3 ⋅ 4 ⋅6( )
5+(−6)+(−1)+0

= 144
−2

 
 
4. The product: 
 

A = −1,8
−1,2

⋅ 3,5
−4

⋅ 6,7
−2,8

 
 
will be: 

 

  
A = −1,8

−1,2

⋅3,5
−4

⋅6,7
−2,8

= −1,8 ⋅3,5 ⋅6,7( )
−1,2+ (−4)+(−2,8)

= 42,21
−8
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5. The ratio: 
 

A =
8
−2

4
4  

 
will be: 

 

A =
8
−2

4
4 =

8
4

⎛
⎝⎜

⎞
⎠⎟

−2−4

= 2
−6

 

 
6. The ratio: 

 

A =
4
−1

2
−8  

 
will be: 

 

A =
4
−1

2
−8 =

4
2

⎛
⎝⎜

⎞
⎠⎟

−1−(−8)

= 2
7

 

 
7. The function: 
 

  

A =
2
3

+ 3
−1

− 2
0

⋅3
2

+ 4
6

+ 0
2

(2
4

+ 1
−6

) ⋅ (3
3

+ 5
4

) + 4
1

+ 9
0

 

 
 As we know, we get: 

 

  

A =
2
3

+ 3
−1

− 2
0

⋅3
2

+ 4
6

+ 0
2

(2
4

+ 1
−6

) ⋅ (3
3

+ 5
4

) + 4
1

+ 9
0

=  

 

 

2
3

+ 3
−1

− 6
2

+ 2
3

+ 0
1

3
−2

⋅8
7

+ 2
0,5

+ 3
0

=
2 + 3 − 6 + 2 + 0( )

3+(−1)+ 2+3+1

24 + 2 + 3( )
−2+7+0,5+0 =  

 

 

=
1
8

29
5,5 =

1
29

⎛
⎝⎜

⎞
⎠⎟

8−5,5

=
1

29
⎛
⎝⎜

⎞
⎠⎟

2,5

. 
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8. The function: 
 

  

A =
3
3⎛

⎝⎜
⎞
⎠⎟

2

+ 4
2⎛

⎝⎜
⎞
⎠⎟

3

+ 8
93

− 22
3

⋅ 42
2

⋅ 4
2⎛

⎝⎜
⎞
⎠⎟

2

2
4⎛

⎝⎜
⎞
⎠⎟

3

+ 5
3⎛

⎝⎜
⎞
⎠⎟

3

+ 32
255

+ 43
4

⋅ 31
1

⋅ 2
3⎛

⎝⎜
⎞
⎠⎟

3  

 
is: 

  

A =
32( )+

2⋅3

43( )
3⋅2

+ 2
3

− (22 )
3⋅2

⋅ 42( )
2⋅2

⋅ 42( )
2⋅2

23( )
3⋅4

+ 53( )
3⋅3

+ 2
5

+ 43( )
4⋅3

⋅ 31( )
1⋅1

⋅ 23( )
3⋅3 =  

 

=
9
6

+ 64
6

+ 2
3

− 4
6

⋅16
4

⋅16
4

8
12

+ 125
9

+ 2
5

+ 64
12

⋅3
1

⋅8
9 =

9 + 64 + 2( )
6+6+3

− 4 ⋅16 ⋅16( )
6+ 4+4

8 + 125 + 2( )
12+9+5

+ 64 ⋅3 ⋅8( )
12+1+9 =  

 

=
75
15

− 256
16

135
26

+ 1536
22 =

75 − 256( )
15+16

135 + 1536( )
26+22 =

181
31

1671
48 =

181
1671

⎛
⎝⎜

⎞
⎠⎟

31−48

=  

 

=
181
1671

⎛
⎝⎜

⎞
⎠⎟

−17

≈ 0,10
−17

 

 
9. Prove identity 3, i.e.: 
 

α
κ⎛

⎝
⎞
⎠

ν

= αν( )
ν⋅κ

 

 
 Proof:  

 

 
a
κ⎛

⎝
⎞
⎠

ν

= a
κ +0

⋅ a
κ +0

⋅ a
κ +0

⋅ ⋅ ⋅ a
κ +0

ν − times
1 244 344 =  

 

   = aν
κ +κ +κ +...+κ

v− times6 74 84

= (αν )
ν ⋅κ

       QED. 
 
10. Prove identity 5, i.e.: 
 

αν
μ

= αν
μ⋅ν
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 Proof:  

αν
μ

= a
μ+0

⋅ a
μ +0

⋅ a
μ +0

⋅ ⋅ ⋅ a
μ +0

ν − times
1 244 344 == (aν )

μ + μ + μ +...+ μ

v− times6 74 84

= (αν )
ν ⋅μ

 QED. 

 
11. Because: 
 

a
κ

+ β
λ

= a + β( )
κ +λ

 
 
then: 

 

a
κ

= a + β( )
κ +λ

− β
−λ

 
 
according the known identity. 

 
Indeed,  

 

 
a
κ

= a + β( )
κ +λ

− β
−λ

= a + β − β( )
κ +λ − λ

= a
κ

 QED. 
 
12. Because: 
 

a
κ

⋅ β
λ

= a ⋅ β( )
κ +λ

 
 
then: 

 

a) 

 

a
κ

=
a ⋅ β( )
κ + λ

β
λ   and  b) a

κ

⋅ β
λ

− a ⋅ β( )
−(κ +λ )

= 0
0

 

 
Indeed,  
 

  a) 

 

a
κ

=
a ⋅ β( )
κ +λ

β
λ =

a ⋅ β
β

⎛
⎝⎜

⎞
⎠⎟

κ +λ −λ

= a
κ

 QED. 

 

b) 
  
a
κ

⋅ β
λ

− a ⋅ β( )
(κ +λ )

= a
κ

⋅ β
λ

− a ⋅ β( )
−(κ + λ )

= (αβ − αβ) = 0
0

κ +λ −(κ +λ )

 QED. 
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3. GENERAL EXAMPLES OF THE CATEGORY  C
0

  
OF MATHEMATICS 

 
 
1. Calculate the sum: 
 

  A = (3 + 2i)
6−3i

+ (8 − 2i)
−3−3i

− (6 + 3i)
2i

 
 
 As we know, we get: 

 

  
A = 3+ 2i( )

6−3i

+ 8 − 2i( )
−3−3i

− (6 + 3i)
2i

= 3+ 2i + 8 − 2i − 6 − 3i( )
6−3i+(−3−3i)+2i

= 5 − 3i( )
3−4i

 
 
2. Calculate the product: 
 

  
A = (2 + 3i)

1+ i

⋅ (2 − 3i)
1− i

⋅ (4 + 6i)
3+5i

⋅ 4 − 6i( )
3−5i

 
 
 As we know, we get: 

 

  
A = (2 + 3i)

1+ i

⋅ (2 − 3i)
1− i

⋅ (4 + 6i)
3+5i

⋅ 4 − 6i( )
3−5i

= [ 22 + 32 )(42 + 62( )
1+ i+1− i+3+5i+3−5i

] = 676
8

 
 
3. Calculate the ratio: 
 

A =
28i( )

i

(3i)
i  

becomes: 

  
A =

28i
3i

⎛
⎝⎜

⎞
⎠⎟

i− i

=
28
3

⎛
⎝⎜

⎞
⎠⎟

0

=
28
3

 

 
4. Because: 
 

  
α + βi( )

κ + λi

+ γ + δ i( )
μ +ν i

= [α + γ + (β + δ )i]
κ + μ +(λ +ν )i

 
then: 

  
α + βi( )

κ + λi

= [α + γ + (β + δ )i]
κ + μ +(λ +ν )i

− γ + δ i( )
−(μ +ν i)

 
 Indeed, 

  
α + βi( )

κ + λi

= [α + γ + (β + δ )i − γ + δ i( )
κ + μ +(λ +ν )i−(μ +ν i)

] =  
 

  
[α + γ + βi + δ i − γ − δ i

κ + μ +λi+νi− μ −ν i

] = α + βi( )
κ +λi

 QED. 



 60

5. Calculate the sum: 
 

Α = ημ2x
συν2 x

+ συν 2x
ημ2 x

 
 As we know, we get: 

  
Α = ημ2x

συν2 x

+ συν 2x
ημ2 x

= ημ2x + συν 2x( )
συν2 x+ημ2 x

= 1
1

 
 
6. Calculate the value of the function: 

Α = ημ2x
eix

+ συν 2x
e− ix

 

 for  
  
x =

π
2

 

 
 As we know, we get: 
 

  
Α = ημ2x

eix

+ συν 2x
e− ix

= ημ2x + συν 2x( )
eix +e− ix

= 1
συν x+ iημx+συν x− iημx

= 1
2⋅0

= 1
0

= 1 
 
7. Calculate the function: 
 

  

A =

(2 + i
    1− i

)
⎡

⎣
⎢

⎤

⎦
⎥

2

+ 4 − i( )
  3+ i⎡

⎣
⎢

⎤

⎦
⎥

3

+ (6 + 3i)2
3i

3 + 5i( )2
4i

+ 5 − 6i( )5
20i

 

 As we know, we get: 
 

  

A =
2 + i( )2⎡

⎣⎢
⎤
⎦⎥

2(1− i)

+ 4 − i( )3⎡
⎣⎢

⎤
⎦⎥

3(3+ i)

+ 6 + 3i( )2
3i⋅2

3+ 5i( )
4i:2

+ 5 − 6i( )
20i:5 =  

 

=
4 − 1+ 4i( )

2− 2i

+ 64 − 48i − 12 − i( )+
9+3i

(36 − 9 + 36i)
6i

(3 + 5i
2i

) + 5 − 6i( )
4i =

=
4 − 1+ 4i + 64 − 48i − 12 − i + 36 − 9 + 36i( )

2−2i+9+3i

3 + 5i + 5 − 6i( )
2i+4i =

 

 

  

=
82 − 9i( )

11+ i

(8 − i)
6i =

82 − 9i
8 − i

⎛
⎝⎜

⎞
⎠⎟

11+ i /6i
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8. Solve the equation of degree: 
 

  (x2 )
x2

−5
−4x

⋅ x
0

+ 4
3

= 0
0

 (3.1) 
 

SOLUTION 
 

The given equation of degree (3.1) in category  C
0

 becomes: 
 

  
x2( )
x2

− 5
−4x

⋅ x
0

+ 4
3

= 0
0

⇔  
 

  
x2( )
x2

− 5 ⋅ x( )
−4x+0

+ 4
3

= 0
0

⇔  
 

x2 − 5x + 4( )
x2 −4x+3

= 0
0

⇔  
 

  
  

x2 − 5x + 4( )
x2 −4x+3

= 0
0

  (3.2) 
 

whose conjugate equations are: 
 

  

   x2 − 4x + 3 = 0
   x2 − 5x + 4 = 0

⎫
⎬
⎪

⎭⎪
 (3.3) 

 
The hyperthetis equation yields the roots: 

 

  
xh1

= 3    and    xh2
= 1( ) (3.4) 

 
 And the base equation yields the roots: 

 

  
xb1

= 4    and    xb2
= 1( ) (3.5) 

 
The roots (3.4) and (3.5) are the required roots of the function of degree (3.1), in 

category  C
0

 of mathematics. 
 
Obviously, the equation of degree (3.1) would yield different roots if solved in 

category  C
1

 of mathematics. 
 

NOTE: As mentioned before, any equation of degree, solved in the category  C
0

 of 

mathematics, should be set equal to 0
0

 in order to find its roots. 
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4. NOTEWORTHY EQUATIONS OF DEGREE, CATEGORY  C
0

 
 
 
1. Based on the aforementioned: 
 

     a
κ⎛

⎝
⎞
⎠

ν
μ

= aν
ν (κ + μ )

 

  
from which: 
 

     a
κ⎛

⎝
⎞
⎠

ν

= aν
κν

 and 

 

     α( )ν
μ

= aν
μν

 
 
2. Prove that: 
 

     a
κ⎛

⎝
⎞
⎠

ρ
τ⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

ν
μ

= aρν
κ +τ( )ρν + μν

 

 
 Proof: From (1), we get: 
 

a
κ⎛

⎝
⎞
⎠

ρ
τ

= aν
(κ +τ )ρ

, therefore: 

 

a
κ⎛

⎝
⎞
⎠

ρ
τ⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

ν
μ

= aρ
(κ +τ )ρ⎛

⎝⎜
⎞
⎠⎟

ν
μ

= aρν
κ +τ( )ρν + μν

, QED. 

 
3. Prove that: 
 

a
κν

μ

= aν

κ − μν
ν

 
 
 Proof: we set: 
 

a
κν

μ

= A
B

 
 
 so we have:  

a
κ

= A
B⎛

⎝
⎞
⎠

μ
ν

 or  a
κ

= Αν
Β+ μ( )ν
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 from which we get: 
 

   Β + μ( )ν = κ

and  Aν = a 

⎫
⎬
⎪

⎭⎪
 

 
 which are rearranged to give: 
 

B =
κ − μν

ν
A = aν

⎫

⎬
⎪

⎭⎪
 QED. 

 
4. Prove that: 
 

a
κν

μ
ρ
τ

= aρν

κ − μν −τρν
ρν

 
 
 Proof: According to the equation in (3) above, we have: 
 

a
κν

μ

= aν

κ − μν
ν

, therefore: 
 

a
κν

μ
ρ
τ

= aν

κ − μν
νρ

τ

= aρν

κ − μν −τρν
ρν

, QED. 
 

 
5. Prove that: 
 

a
κν

μ

⋅ β
λν

μ

= a ⋅ βν

(κ − μν )+(λ − μν )
ν

 
 
 Proof: We have: 
 

a
κν

μ

= aν

κ − μν
ν

, and 
 

β
λν

μ

= βν

λ − μ ν
ν

 
 
 Multiplying the parts we get: 
 

a
κν

μ

⋅ β
λν

μ

= aν

κ − μ ν
ν

⋅ βν

λ − μ ν
ν

= a ⋅ βν

(κ − μ ν ) + ( λ − μ ν )
ν

 QED 
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6. Prove that: 
 

a
κν

μ

: β
λν

μ

=
a
β

ν

κ − λ
ν

 

 
Proof: Exactly as previous example 

 
7. Prove that: 
 

a
κ⎛

⎝
⎞
⎠

ρ
τ

ν
μ

= a ρν

(κ + τ ) ρ − μν
ν

 

 
 Proof: As we know, we have 

a
κ⎛

⎝
⎞
⎠

ρ
τ

= aρ
κ +τ( )ρ

, 

 Therefore, again from what we know: 

a ρ
κ + τ( )ρν

μ

= a ρν

(κ + τ ) ρ − μν
ν

, QED. 
 
8. Prove that: 
 

  

a
κ⎛

⎝
⎞
⎠

ν
μ

⋅ a
κ⎛

⎝
⎞
⎠

ν
μ

⋅ a
κ⎛

⎝
⎞
⎠

ν
μ

..... a
κ⎛

⎝
⎞
⎠

ν
μ

= a
κ⎛

⎝
⎞
⎠

ν ⋅ρ
μ

ρ − times
1 2444444 3444444

 

 
 Proof: As we know, the above can be written as: 
 

aν
κ + μ( )ν

⋅ aν
κ + μ( )ν

⋅ aν
κ + μ( )ν

⋅ ⋅ ⋅ ⋅ aν
κ + μ( )ν

ρ− times
1 24444 34444 = aρν

κ + μ( )ρν

= a
κ⎛

⎝
⎞
⎠

ρν
μ

, QED. 

 
9. Prove that: 
 

  

a
κ⎛

⎝
⎞
⎠

ν
μ

+ a
κ⎛

⎝
⎞
⎠

ν
μ

+ a
κ⎛

⎝
⎞
⎠

ν
μ

..... a
κ⎛

⎝
⎞
⎠

ν
μ

= ρaν
(κ + μ )ρν

ρ − times
1 24444444 34444444

 

 
 Proof: As we know, the above can be written as: 
 

 

aν
κ + μ( )ν

+ aν
κ + μ( )ν

+ aν
κ + μ( )ν

⋅ ⋅ ⋅ ⋅ aν
κ + μ( )ν

ρ− times
1 24444 34444 = ρaν

κ + μ( )ρν

, QED. 

 



 65

10. It can also be shown that: 
 

    a) a
κ⎛

⎝
⎞
⎠

ν
μ

+ β
λ⎛

⎝
⎞
⎠

ρ
τ

= aν + β ρ( )
κ + μ( )ν + λ +τ( )ρ

 

 

    b) a
κ⎛

⎝
⎞
⎠

ν
μ

− β
λ⎛

⎝
⎞
⎠

ρ
τ

= aν − β ρ( )
κ + μ( )ν + λ +τ( )ρ

 

 

c) a
κ⎛

⎝
⎞
⎠

ν
μ

⋅ β
λ⎛

⎝
⎞
⎠

ρ
τ

= aν ⋅ β ρ( )
κ + μ( )ν + λ +τ( )ρ

 

 

d) a
κ⎛

⎝
⎞
⎠

ν
μ

: β
λ⎛

⎝
⎞
⎠

ρ
τ

= aν : β ρ( )
κ + μ( )ν − λ +τ( )ρ

 

 
The above proofs are very easy, based on what has been mentioned so far. 

 
 

11. If: a
κ⎛

⎝
⎞
⎠

x
y

= A1

B1

, then by definition: 

 

log
a
κ Α1

Β1

= x
y

  (Β) 

 
 Because we have: 
 

a
κ⎛

⎝
⎞
⎠

x
y

= ax
(κ + y)x

 

 
 then from these relationships we get: 
 

ax
(κ + y)x

= A1

B1

 or 
κ + y( )x = B1

α x = A1

⎫
⎬
⎪

⎭⎪
   c( ) 

 
Solving the simultaneous equations (c) for x and y we find the value of the 
logarithm (B). 

 
 

12.  a
κ
,  a

κ
+ β

λ⎛
⎝

⎞
⎠ ,  (a

κ
+ β

λ
) + β

λ⎡
⎣⎢

⎤
⎦⎥
,......... = a

κ
,  a + β( )

κ +λ

, (a + 2β
κ +2λ

),...........(a + (ν − 1)β)
κ +(ν −1)λ

 

  

is an arithmetic progression of degree (ν terms), with first term, a
κ

, and common 

difference, β
λ

. 
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13. For the above arithmetic progression, prove that: 
 
a) The νth term of the sequence is: 

 

τ = (a + (ν − 1)β)
κ +(ν −1)λ

 
 

b) The sum of ν terms is: 

Σ =
2a + (ν − 1)β[ ]ν

2

νκ +λ
ν −1

2
⎛
⎝⎜

⎞
⎠⎟

ν⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

 
Proof: a) By definition, the νth term of an arithmetic progression is: 

 

τ = (a + (ν − 1)β)
κ +(ν −1)λ

 
 

b) To find the sum of ν terms we proceed as follows: 
 

Σ = a
κ

+  a + β( )
κ +λ

+ (a + 2β
κ +2λ

) + ...........+ (a + (ν − 1)β)
κ + (ν −1)λ

 
 

or Σ =
2 a + (ν − 1)β[ ]ν

2

νκ + λ (1+ 2 + 3 + ...(ν − 1))⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

 but: 

1 + 2 + 3 + … +(ν – 1) = 
ν − 1

2
⎛
⎝⎜

⎞
⎠⎟

ν  

 which gives us: 

Σ =
2a + (ν − 1)β[ ]ν

2

νκ +λ
ν −1

2
⎛
⎝⎜

⎞
⎠⎟

ν⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

, QED 

 

14. a
κ
,  a

κ
⋅ β

λ⎛
⎝

⎞
⎠ ,  (a

κ
⋅ β

λ
) ⋅ β

λ⎡
⎣⎢

⎤
⎦⎥
,......... = a

κ
,  a ⋅ β( )

κ +λ

, (a ⋅ β 2
κ + 2λ

),...........(a ⋅ β (ν −1) )
κ +(ν −1)λ

 , 

is a geometric progression of degree (ν terms), with first term, a
κ

, and common 

ratio, β
λ

. 
 

a) The νth term of the sequence is: 
 

τ = (a ⋅ βν −1)
κ +(ν −1)λ
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b) The sum of ν terms is: 

Σ =
a(βν − 1)

β − 1
⎡

⎣
⎢

⎤

⎦
⎥

νκ +λ ν −1
2

⎛
⎝⎜

⎞
⎠⎟

ν

 

 
 These are proven in the manner demonstrated for the arithmetic progression. 
 
15. Other sequences of degree: 
 

a
κ⎛

⎝
⎞
⎠

ν
μ

, a
κ⎛

⎝
⎞
⎠

ν
μ

+ β
λ⎛

⎝
⎞
⎠

ρ
τ

,  a
κ⎛

⎝
⎞
⎠

ν
μ

+ β
λ⎛

⎝
⎞
⎠

ρ
τ

+ β
λ⎛

⎝
⎞
⎠

ρ
τ

, …. 

 arithmetic progression with first term, a
κ⎛

⎝
⎞
⎠

ν
μ

, and common difference β
λ⎛

⎝
⎞
⎠

ρ
τ

.  

 Also: 

 
a
κ⎛

⎝
⎞
⎠

ν
μ

, a
κ⎛

⎝
⎞
⎠

ν
μ

⋅ β
λ⎛

⎝
⎞
⎠

ρ
τ

,  a
κ⎛

⎝
⎞
⎠

ν
μ

⋅ β
λ⎛

⎝
⎞
⎠

ρ
τ

⋅ β
λ⎛

⎝
⎞
⎠

ρ
τ

 …. 

 geometric progression with first term, a
κ⎛

⎝
⎞
⎠

ν
μ

, and common ratio β
λ⎛

⎝
⎞
⎠

ρ
τ

.  

 
NOTE: All the above mathematical formulae, can be reduced to the equivalent 
formulae of the hitherto known mathematics by setting the hyperthetes of the 
numbers of degree equal to 0.  
 
 
 

5.TOPOLOGY IN MATHEMATICS OF DEGREE 
BASIC TOPOLOGICAL OPERATIONS 

 
In the mathematics of degree, the following definition holds: 
 
Definition: To any number of degree: 
 

S
n

 
 
 where S > 0 and n is a natural number,  
 
corresponds a topological surface, surface area S and genus n. Obviously, the  
inverse definition also holds: 
 
To any topological surface, surface area S and genus n, corresponds a number of 

degree   S
n

. 

For example, based on the above definition, the number 4
0

, represents a sphere (as we 
know, a sphere has genus n = 0) with surface area 4. Similarly, a torus (donut), 



 68

surface area 10 (as we know, a torus has genus n = 1), represents the number of 

degree  10
1

. 
 
Note: In the above definition, the form (shape) is irrelevant, as long as the 
surface area is S and genus n. 
 
As we will shortly see, in the Topology of mathematics of degree, we can perform 
operations (add, subtract, multiply, divide and so on) on different shapes 

(topological spaces) - in category C
1

 or C
0

 - something that was not possible 
hitherto.  
 
 

EXAMPLES 
 

1a) In category  C
1

, figure 8, what shape results from the addition of a sphere 
with surface area  S1 , a cube with surface area S2  and a torus (donut) with 
surface area  S3 ? 
 

 
fig. 8 

 
SOLUTION 

 
The given translates into: 
 

 S
0

1+ S
0

2 + S
1

3 = S1 + S2 + S3( )
0 ⋅0 ⋅1

= (S1 + S2 + S3 )
0

 (1) 
 
i.e., the result is a sphere with surface area S=S1 + S2 + S3 , figure 8. 
 

b) What shape results in category C
0

? 
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SOLUTION 
 
The given translates into: 
 

 S
0

1+ S
0

2 + S
1

3 = S1 + S2 + S3( )
0 +0 +1

= (S1 + S2 + S3 )
1

 (2) 
 
i.e., the result is a torus (donut) with surface area S=S1 + S2 + S3 , figure 9. 
 

 
fig. 9 

 
2. In figure 10, the topological surfaces A, B, C, D have surface area  S1,S2 , S3,S4  
respectively. 

Find, in category C
1

, the shape that results from the following operations: 
 

 
fig. 10 
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SOLUTION 

a. In category  C
1

, the given problem gives: 
 

 S
0

1+ S
2

2 − (S
3

3 × S
1

4 ) :S
1

5 = (S1 + S2 )
0 ⋅2

− (S3 ⋅S4

3 ⋅1

) :S5

1

⇒  
 

 S1 + S2( )
0

− (S3 ⋅S4 )
3

:S
1

5 ⇒  
 

 
S1 + S2( )

0

−
S3 ⋅S4

S5

⎛

⎝⎜
⎞

⎠⎟

3:1

⇒  

 

 
S1 + S2( )

0

−
S3 ⋅S4

S5

⎛

⎝⎜
⎞

⎠⎟

3

⇒  

 

 
S1 + S2 −

S3 ⋅S4

S5

⎛

⎝⎜
⎞

⎠⎟

0 ⋅3

⇒  

 

 
S1 + S2 −

S3 ⋅S4

S5

⎛

⎝⎜
⎞

⎠⎟

0

= S
0

  (3) 

 

i.e., the result is a sphere with surface area S = S1 + S2 −
S3 ⋅S4

S5

 

 

3. In category   C
0

, what shape results if we multiply v tori (donuts), each with 

surface area  
 
1
E

, Ε > 0? 

 
fig. 11 

 



 71

SOLUTION 
 

As we know, in category  C
0

 we have: 
 

  

1
E

⎛
⎝⎜

⎞
⎠⎟

1

1

⋅
1
E

⎛
⎝⎜

⎞
⎠⎟ 2

1

⋅
1
E

⎛
⎝⎜

⎞
⎠⎟ 3

1

⋅ ... ⋅
1
E

⎛
⎝⎜

⎞
⎠⎟ ν

1

=
1

Eν

⎛
⎝⎜

⎞
⎠⎟

1+1+1+1+ ...+1

=
1

Eν

⎛
⎝⎜

⎞
⎠⎟

ν

 (4) 

 
Therefore, from (4), e.g. for ν = 1,000,000 tori (donuts), when multiplied the result is 

a topological surface with surface area 
1

Eν  (very small surface area) and genus n = ν 

= 1.000.000, i.e., a «sponge» surface, with vary small surface area and many 
«handles». 
 
4. (The inverse problem) 
 

In category  C
1

, what topological surface is Α; 
 

 
A =

2
10

+ 3
2

+ 4
1

⋅5
2

5
20  (5) 

 
SOLUTION 

 
From (5), we get: 
 

A =
2
10

+ 3
2

+ 4
1

⋅5
2

5
20 =

(2 + 3 + 20)
10 ⋅2 ⋅2

5
20 =

25
40

5
20 =

25
5

⎛
⎝⎜

⎞
⎠⎟

40 :20

⇔  

 

A = 5
2

 (6) 
 
Therefore, the required topological surface has surface area S = 5 and genus n = 2, 
figure 12. 

 
fig. 12 
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5. Other examples (for the reader). 
 

a. In category C
1

 and  C
0

, what surface results from the multiplication of a sphere, 
surface area  S1  and a torus (donut) surface area S2 ? 

b. In category  C
1

 and  C
0

, what surface results from the addition of three tori 
(donuts), each of surface area S1? 

 
 

SUMMARY OF CATEGORY C
0

 OF MATHEMATICS 
 

As we have seen, the categories C
0

 and C
1

 of mathematics, are two categories with 
different axiomatic foundation. 
 
To avoid unnecessary repetition, it is enough to emphasise here that: 
 
The same reasoning and methods applied to various mathematical problems of 

category  C
1

 (e.g. functions, equations, integrals, differential equations, complex 
numbers and so on) considered in the above chapters, can also be applied to 

solve the same problems in category C
0

. 
 
We must also emphasise that, in the mathematics of degree, any given problem can 
have mora than one solution. Namely, it has a different solution (usually though 

not always) in category  C
1

 and a different solution in category C
0

. 
 
This is obviously not the case for the hitherto known mathematics, as they have 
one and only one axiomatic foundation. 
 
Finally, after all that has been mentioned, we arrive at the following conclusion: 
 
The whole Science of mathematics can be founded on two distinctive categories, 
namely: 

a. Category C
1

, and 

b. Category C
0

 
 
 and none other. 
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6. TRANSFORMATION OF THE HITHERTO KNOWN MATHEMATICS 
TO MATHEMATICS OF DEGREE 

METHOD OF INDUCTION 
 

In the preceding chapters we established the axiomatic foundation of mathematics, in 

categories  C
1

 and C
0

, and demonstrated the methods and reasoning that are applied to 
the mathematics of degree. 
 
Having said all this, the following conclusion arises: 
If we take any mathematical relationship (e.g. equation, function, integral etc) of the 
hitherto known mathematics and convert its digits (variables or constants) into 

numbers of degree of the form a
κ

 (i.e. assign hyperthetes), we get the equivalent 
mathematical relationship (e.g. equation, function, integral etc) of the mathematics of 
degree. 
Choice of the hyperthetes can be arbitrary or not. 
 
For example, the equation,  

 ax2 + bx + c = 0   (1) 
 
transformed into the mathematics of degree can take the form (one of many that can 
be chosen):  

 a
3

⋅ x2 + b
−1

⋅ x
3

+ c
5

= 0
1

   (2) 
 

Furthermore, solving the equation (2), in category C
0

 and C
1

 of mathematics, we 
can examine and compare any conclusions that might arise with the respective 
conclusions arising from the familiar solutions of equation (1). 
 
The same can also be performed, for example, on the following integral from our 
hitherto known mathematics:  

 ex + 4∫ ⋅dx   (3) 
 
The integral (3), transformed into the mathematics of degree - in one of its possible 
forms - becomes:  

 ex
2

+ 4
−52

3

∫   dx   (4) 
 

Furthermore, solving the integral (4), in category C
0

 and C
1

 of mathematics, we 
can examine and compare any conclusions that might arise with the respective 
conclusions arising from the familiar solutions of equation (3). 
 
The same method demonstrated in the above two examples can applied to any 
mathematical relationship (e.g. equation, function, integral and so on) of the hitherto 
known mathematics. 
 



 74

Definition: The method of transforming any relationship Α of the hitherto 
known mathematics into a relationship of the mathematics of degree - by 
transforming each digit to a number of degree (i.e., assign different hyperthetes 
on top of each digit of relationship Α) – shall be called the «Method of induction» 
of the mathematics of degree. 
 
Consequently, we can immediately conclude from the above that the field of study of 
the mathematics of degree is immense in the science of mathematics. 
  

NOTEWORTHY OBSERVATION 
 
Based on the «Method of induction», any problem of the hitherto known 
mathematics (e,g. Fermat’s last theorem, the Riemann conjecture, etc...), can be  
transformed into the mathematics of degree where it can be studied and proven, 
if in fact a solution exists. 
  
THE FUNDAMENTAL THEOREMS OF THE MATHEMATICS OF DEGREE 
 
1. A mentioned above, the four basic operations (addition, subtraction, multiplication, 

division), in categories  C
1

 and C
0

, are the same regarding the «base» but differ 
regarding the «hyperthetes». 
 
Consequently, we can state the following theorem: 
THEOREM: (Theorem of common solutions). 
In the mathematics of degree, the solution of any mathematical problem, in categories  

 C
1

 and  C
0

, is always common with regard to the «base» and different (not always) 
with regard to the «hyperthetis» 
 
2. Additionally, as mentioned previously, the mathematics of degree are founded in 

two and only two categories of axiomatic foundation, i.e., category  C
1

 and category 

 C
0

. 
 
Consequently, we can state the following theorem: 
THEOREM: (Theorem of complete solution). 
The solution of any mathematical problem is complete, if and only if, the 

problem is solved in both categories of axiomatic foundation, i.e., category  C
1

 and 

category  C
0

. 
 
 
3. In the hitherto known mathematics, because the axiomatic foundation is one and 
only one, the solution of a mathematical problem is one and only one. 
 
By contrast, the same does not occur in the mathematics of degree because there are 

two axiomatic foundations, namely, that of category C
1

 and that of category  C
0

. 
Consequently, we can state the following theorem: 
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THEOREM: (Theorem of uncertainty of solutions). 
Given a mathematical problem, we cannot proceed to its correct solution, if we 

do not know in advance (a priori), in which category or categories ( C
1

, C
0

) the 
solution is required. 
 
As we can see, the three above theorems have deep implications regarding the «purely 
mathematical» aspect of mathematics, but even more so in the philosophy of 
mathematics. 
  

EPILOGUE 
 
Having mentioned all this, we have outlined the basic principles and way of thinking 

applied to the mathematics of degree, in the axiomatic foundation of categories  C
0

 and 

 C
1

.  
 
But, the field of the mathematics of degree is a huge field of mathematical study. 
 
So, further research into the mathematics of degree is certain to yield many more 
notable  theorems, conclusions, identities and so on, as well as numerous 
philosophical conclusions that affect the philosophy of mathematics. 
 
The mathematics of degree is a completely new branch of mathematics, and as 
such is still on its first «steps». 
 
Time will judge the qualitative and quantitative contribution of the mathematics 
of degree to the science of mathematics. 
 
Copyright 2007: Christos A. Tsolkas   Χρήστος Τσόλκας 
     June 2007  
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SUPPLEMENT 
 ANALYTIC GEOMETRY OF DEGREE 

  BASIC CONCEPTS 
 
A .  G r a p h i c a l  r e p r e s e n t a t i o n  o f  n u m b e r s  o f  d e g r e e  
 
 
As is known, a number of degree A, is expressed by the following notation: 
 

 A = a
k
  (1) 

 
where, a is the base and k is the hyperthetis (degree). 
 
 
For example, in the number of degree: 
 

3
4A =   (2) 

 
a = 4 and k = 3. 
 
 
Additionally, as mentioned in previous chapters, on a plane Eg in an orthogonal 

coordinate system x-y, a number of degree, for example 
3
4 , is the point ⎟

⎠
⎞

⎜
⎝
⎛ 3
4M , which 

has coordinates x = 4 and y = 3, fig(a): 
 

 
fig(a) 
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Consequently: 
 
a. If for example we have the equation: 
 

1
b
y

a
x

11

=+   (3) 

 
then, equation (3) on the plane Eg represents a straight line (E), fig(1): 
 

 
fig(1) 

 

We will call the numbers of degree ⎟
⎠
⎞

⎜
⎝
⎛ ib

ii aM  that lie on the line (E) «linear numbers 

of degree». 
 
 
b. If for example we have the equation: 
 

  x − a0( )2 + y − b0( )2 = R 2  (4) 
 
then, equation (4) on the plane Eg represents the circumference of a circle (C) radius 

R with center 0K  having coordinates ( )000 b,aK , fig(2): 

 
fig(2) 
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We will call the numbers of degree ⎟
⎠
⎞

⎜
⎝
⎛ ib

ii aM  that lie on the circumference (C) 

«circular numbers of degree». 
 
 
c. If for example we have the equation: 
 

( ) ( )
1

b
by

a
ax

2

2
0

2

2
0 =

−
+

−
  (5) 

 
then, equation (5) on the plane Eg represents an ellipse (H) with major and minor axis 

a and b respectively and center 0K  having coordinates ( )000 b,aK , fig(3): 

 
fig(3) 

 

We will call the numbers of degree ⎟
⎠
⎞

⎜
⎝
⎛ ib

ii aM  that lie on the ellipse (H) «elliptical 

numbers of degree». 
 
 
Similarly, in the manner mentioned above, we can have «parabolic numbers of 

degree», «hyperbolic numbers of degree» and so on, for any equation ( )yx,f =0 

from our familiar analytic geometry. 
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B .  G r a p h i c a l  r e p r e s e n t a t i o n  o f  e q u a t i o n s  o f  d e g r e e  
 
Let us suppose for example that we have the following equation of degree 

(category
1
C ): 

 

( )
1

g 0yx,f =   (6) 
 
of which the simultaneous equations are: 
 

( ) 0yx,fb =   (7) 
 
the base equation, and 
 

( ) 1yx,fh =   (8) 
 
the hyperthetis (degree) equation 

where x and y are real numbers. 
 
Also, as is known, 

 

  
fg x,y( )=

fh x,y( )
fb x,y( )

 

           
 
     (9)

Now, lets take a plane (Ε) in an orthogonal coordinate system x-y, fig(4): 

 
fig(4) 

 
Then, in the case of equation (9), the base equation (7) is represented by the curve Cb 

and the hyperthetis equation (8) is represented by a different curve Ch. 
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As we can see, our initial equation of degree (6) is represented by two curves on a 

plane (Ε) in an orthogonal coordinate system x-y, namely, the base curve Cb and 

the hyperthetis curve Ch. 

 
By contrast, in the familiar Analytic Geometry, on a plane (Ε) in an orthogonal 

coordinate system x-y, an equation: 

( )yx,f =0 

is always represented by a single curve C (a line, circle, ellipse etc). 
 
 
This is the basic difference between the familiar Analytic Geometry and the 

Analytic Geometry of Degree. 

 

Let us mention now a few examples of Analytic Geometry of Degree. 

 
 

E X A M P L E S  
 

Example 1: Given the equation of degree (category 
1
C ), 

 
1xy

0yx =+   (13) 
 
represent it graphically on a plane (Ε) in an orthogonal coordinate system x-y. 
 
Solution: 
 
Equation (13) can be rearranged to give: 
 

                                                   ( )
yxxy

yxyx
⋅

+=+ , so: 
 

( )
1yx

0yx =+
⋅

  (14) 
 
In the equation of degree (14) the base equation is: 
 

x + y = 0  (15) 
 
and the hyperthetis equation: 
 

xy = 1   (16) 
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Consequently, the graphical representation of the equation of degree (13), on a plane 

(Ε) in an orthogonal coordinate system x-y, is the line x + y = 0  given by equation 

(15) and the hyperbola xy = 1 given by equation (16), fig(5): 

 
fig(5) 

 
Example 2: Given the equation of degree (category  C

0
), 

 
023y12x
0yx =−

++

  (17) 
 
represent it graphically on a plane (Ε) in an orthogonal coordinate system x-y. 
 
Solution: 
 
Equation (17) can be rearranged to give: 
 

( )
( ) ( )

( )
33y2x23y12x23y12x

yxyxyx
+++++++

−=−=− , so: 
 

( )
033y2x

0yx =−
++

  (18) 
 
In the equation of degree (18) the base equation is: 
 

x - y = 0  (19) 
 
and the hyperthetis equation: 
 

2x + 3y + 3 = 0 (20) 
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Consequently, the graphical representation of the equation of degree (17), on a plane 

(Ε) in an orthogonal coordinate system x-y, is the line x - y = 0  given by equation 

(19) and the line 2x + 3y + 3 = 0 given by equation (20), fig(6): 

 
Note: What is the graphical representation of the equation of degree (17) in the 

category 
1
C  ? (Exercise for the reader).. 

 
fig(6) 

 
 

Example 3: Given the equation of degree (category 
1
C ), 

 
1221yx
04x000 =⎟

⎠
⎞

⎜
⎝
⎛−+++

3
4

  (21) 

 
represent it graphically on a plane (Ε) in an orthogonal coordinate system x-y. 
 
Solution: 
 
Equation (21) can be rearranged to give: 
 

( )
( )

=−+++=⎟
⎠
⎞

⎜
⎝
⎛−+++

⋅ 3
4

42
3

21yx3221yx
4x0004x000  
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  0
x
+ 0

y

+ 0
1
+ x

2
− 64

512
= 0 + 0 + 0 + x − 64( )

x⋅y⋅1⋅2⋅512

=  
 

( ),64x
1024xy
−  so: 

 

( )
11024xy
064x =−   (22) 

 
In the equation of degree (18) the base equation is: 
 

064x =−   (23) 
 
and the hyperthetis equation: 
 

1024xy = 1                   (24) 
 
Consequently, the graphical representation of the equation of degree (21), on a plane 

(Ε) in an orthogonal coordinate system x-y, is the line x – 64 = 0 given by equation 

(23) and the hyperbola 1024xy = 1 given by equation (24), fig(7): 

 

 
fig(7) 

 
Example 4: Given the equation of degree (category  C

0
), 

 
021,532yx3210
02yx000000

0
22

=⎟
⎠
⎞

⎜
⎝
⎛−+++++++

−−−

  (25) 

 
represent it graphically on a plane (Ε) in an orthogonal coordinate system x-y. 
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Solution: 
 
Equation (25) can be rearranged to give: 

0
22 21,532yx3210

2yx000000 ⎟
⎠
⎞

⎜
⎝
⎛−+++++++

−−−

 

 

( )
( )201,5

2
32yx3210

2yx000000
22 +−−−

−+++++++  
 

=−+++++++
−−− 332yx3210

4yx000000
22

 
 

( )
01yx

04yx
22

=−+
−+

  (26) 
 
In the equation of degree (26) the base equation is: 
 

x + y – 4 = 0  (27) 
 
and the hyperthetis equation: 
 

01yx 22 =−+  (28) 
 
Consequently, the graphical representation of the equation of degree (25), on a plane 

(Ε) in an orthogonal coordinate system x-y, is the line x + y – 4 = 0 given by equation 

(27) and the circle 01yx 22 =−+ given by equation (28), fig(8): 

 
fig(8) 
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Example 5: Given the equation of degree (category 
1
C ), 

 
1543x3231
0yxα3yx

52

=⋅⋅⋅−⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛  (29) 

 
represent it graphically on a plane (Ε) in an orthogonal coordinate system x-y. 
 
Solution: 
 
Equation (29) can be rearranged to give: 
 

=⋅⋅⋅−⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ 543x3231

yxα3yx

52

 

 

( )
( )

( )
( )

=⋅⋅⋅−+
⋅⋅ 543x52

3
21
3 yxα3yx

33

 
 

( ) ( ) =⋅⋅⋅−+
543x1000

3
8
3 yxα3yx  

 

( ) =−+
⋅⋅⋅⋅⋅ 543x10008

33 y3αyx x  
 

( )
480.000x

33 y3αyx x−+ , so: 
 

( ) 1480.000x
33 0y3αyx =−+ x   (30) 

 
In the equation of degree (30) the base equation is: 
 

0y3αyx 33 =−+ x   (31) 
 
and the hyperthetis equation: 
 

480.000x = 1   (32) 
 
Consequently, the graphical representation of the equation of degree (29), on a plane 

(Ε) in an orthogonal coordinate system x-y, is the curve (Descartes leaf) 

03αyx 33 =−+ xy  given by equation (31) and the line 480.000x = 1 given by 

equation (32), fig(9): 
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fig(9) 

 
Example 6: Given the equation of degree (category  C

0
), 

 

0322x
2

2y
2 044y2x

543

=⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛   (32.1) 

 
represent it graphically on a plane (Ε) in an orthogonal coordinate system x-y. 
 
Solution: 
 
Equation (32.1) can be rearranged to give: 
 

=⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

543
322x

2
2y

2 44y2x  

 

( )
( )

( )
( )

( )
( )

=−⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡ +++ 352
3

24x
22

23y
22 44y2x  

 

=−+
++ 2182x

2
62y

2 6416y4x  
 

( )
( ) ( )

=−⋅+⋅
++++++ 2182x062y0

22 6416y4x  
 

( ),6416y4x
352y2x
22

++

−+  so: 
 

( ) 0352y2x
22 06416y4x =−+

++

  (32.2) 



 87

In the equation of degree (32.2) the base equation is: 
 

 
4x2 + 16y2 − 64 = 0 ⇔

x2

42 +
y2

22 = 1  (32.3) 

 
and the hyperthetis equation: 
 

0352y2x =++                          (32.4) 
 
Consequently, the graphical representation of the equation of degree (32.1), on a plane 

(Ε) in an orthogonal coordinate system x-y, is the ellipse given by equation (32.3) and 

the line given by equation (32.4), fig(10): 

 
Note: What is the graphical representation of the equation of degree (17) in the 

category 
1
C  ? (Exercise for the reader).. 

 

 
fig(10) 
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N O T E W O R T H Y  R E M A R K S  
 
1. The graph given by the base equation will be denoted as Cb and the graph given by 

the hyperthetis equation will be denoted by Ch. 

2. Solution of the simultaneous equations (base and hyperthetis) gives us the point(s) 

of intersection (if any exist) of the curves Cb and Ch. 

3. Consider for example fig(10) from example 6. 

    In this case we notice that for  ′ x 0 ≤ x ≤ x0 , each ixx =  corresponds to a point iM     

    of the line and two points iM′  and  ′ ′ M i  of the ellipse (non bijective). So, the  

    segment AB of the line corresponds the whole of the circumference of the ellipse. 

    Conversely, in fig(6) from example 2, for  x-∞ ≤ x ≤ x∞ , each ixx =  corresponds to    

    the points iM  and iM′  on the two lines respectively (bijective). So, the whole of  

    line Cb corresponds to the whole of the line Ch. 

4. To each equation of degree correspond two graphical representations, Cb and Ch, 

either of category 
1
C  or 

0
C . Obviously Cb is the same for both categories whereas  

Ch is different.    

5. The distance D between Cb and Ch is called the internal distance of the initial 

equation of degree. See fig(6&10). 

6. Study of the two graphical representations Cb and Ch of an equation of degree    

    solved for both categories 
1
C  and 

0
C  (full solution), constitutes the main field of    

    study of Analytic Geometry of Degree. 

 
The above analysis can be extended to three-dimensional space. 

In this case the equations of degree would be of the form: 
 

( )
1

g 0zy,x,f = , (category 
1
C ),    (33) 

and ( )
0

g 0zy,x,f = , (category 
0
C ),    (34) 

 
Obviously, the simultaneous equations arising from (33):  

 
( )
( ) ⎭

⎬
⎫

=
=

1zy,x,f
0zy,x,f

h

b  (35) 

 
as the simultaneous equations arising from (34):  
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( )
( ) ⎭

⎬
⎫

=
=

0zy,x,f
0zy,x,f

h

b  (36) 

 
produce the graphs of the equations of degree (33) and (34) respectively. 
 
Having said that, we conclude that the familiar Analytic Geometry is a partial case the 

Analytic Geometry of Degree. 

 
Specifically, the equations of the familiar Analytic Geometry are equations of 

degree, in which all the numbers have hyperthetis 1 or 0 for categories 
1
C  and 

0
C  

respectively. Consequently, in the familiar Analytic Geometry, rather than a pair of 

graphs Cb and Ch, we have only a single graph, namely Cb, that is the same in both 

categories 
1
C  and 

0
C . 

 

Finally, as we can see, the field of study of Analytic Geometry of Degree is much 

broader than that of Analytic Geometry that we use to date. 

 
Note: «Mathematics of Degree», see www.tsolkas.gr 
 
Copyright 2007: Christos A. Tsolkas  
           

 


